ML-based Prediction for Train Delays

Towards Uncertainty Quantification

Clément Mantoux

Journée SFdS UQML, 8 Janvier 2025

Problem statement

Models for delay prediction

Predicting confidence intervals

Thanks to our interns!

Samuel Bazaz

Jawad Chemaou

Boubacar Sow

Motivation

Why are we interested in predicting train delays?

Passenger information

Départs			
Boo retard 1640 Llevi	06h41 lle sur	Dijon Ville Saone • Macon Ville	• Tournu
John Perrache			
Store retard 05 min.	07h55	Macon Ville	(C[2]
10 min.	08h06	Lyon Perrache	C 1
sur Alheure	08h10	Lyon Perrache	B
tetard 05 min.	08h21	Lyon Part Dieu	1
Stor Atheure	08h40	Vienne	B
		COLIS S	USPE 07 45 01

Traffic regulation

Predicting confidence intervals

- For each train in the network,
- Given their position and schedule,
- Predict delay propagation
- Provide a confidence interval

Baseline at SNCF (translation):

Future delay = current delay

Predicting confidence intervals

Example

Predicting confidence intervals

Example

Model Idea

• Vectorize train features: current delay, schedule, position...

Capture train interactions with a dedicated architecture
 self-attention, graph neural networks

Process the output to impose constraints

Input vectors

Represent each train i as a vector T_i :

Attention-based Modeling

Feed $(T_1, ..., T_n)$ into self-attention layers:

Predicting confidence intervals

Self-attention between trains

Problem statement

Models for delay prediction

Predicting confidence intervals

Some results for regression

Quantile Regression

Idea: given samples (x_i, y_i) , learn a quantile $q_\alpha(x)$ of (Y | X = x).

Loss for quantile level α :

$$\hat{L}_{\alpha}(f) = \sum_{i=1}^{n} \alpha \, \mathbf{1}_{y_i > f(x_i)}(y_i - f(x_i)) + (1 - \alpha) \, \mathbf{1}_{y_i \le f(x_i)}(f(x_i) - y_i)$$

Here: learn conditional quantiles of $((D_{ij}) | T)$.

One interval / station / train

Conformalized Quantile Regression

Define a **nonconformity score**: $S(D_{true}, [a, b]) = dist(D_{true}, [a, b])$

Compute its quantile over a calibration set:

CQR prediction: $[a, b] \rightarrow \{D \mid S(D, [a, b]) < q_{\alpha}\} = [a - q_{\alpha}, b + q_{\alpha}]$

Caveat: work in log domain for better exchangeability

Predicting confidence intervals

A Matrix Gaussian Model

Idea:
$$(D_{ij}) \sim \mathcal{N}(\mu_{\theta}(T), \Sigma_{\theta}(T))$$

• $\mu_{\theta}(T) : (\mathbf{n} \times \mathbf{d})$
• $\Sigma_{\theta}(T) : (\mathbf{n} \times \mathbf{d})^2$

$$\Sigma_{\theta}(T) = A_{\theta}(T) \otimes B$$

We got:

- $A_{\theta}(T)$: $(n \times n)$
- *B* : (*d* × *d*)

To ensure positivity:

$$egin{aligned} \hat{A}_{ heta}(T) &= U_{ heta}(T)U_{ heta}(T)^{ op} + ext{Diag}(\sigma^2_{ heta}(T)) \ B &= VV^{ op} \end{aligned}$$

Then, learn (θ, V) with MLE.

• $U_{\theta}(T): (\mathbf{n} \times p)$

•
$$\sigma_{\theta}(T)$$
 : (**n**)

•
$$V: (d \times d)$$

- Self-attention architectures and GNNs can be used for delay prediction, and do better than translation
- UQ makes the problem more difficult, but standard methods can still be applied
- Future/ongoing directions
 - · Joint modeling of spatiotemporal dependencies
 - Asymmetric distributions
 - Simulation-based approaches (ongoing PhD thesis)
 - Account for incidents
 - Predictions coherence
 - ...

Thank you!

Any questions?

Bibliography

Appendix

- Arthaud, Farid, Guillaume Lecoeur, et Alban Pierre. « Transformers à Grande Vitesse: Massively parallel real-time predictions of train delay propagation ». Journal of Rail Transport Planning & Management 29 (1 mars 2024): 100418.
- Tiong, Kah Yong, Zhenliang Ma, et Carl-William Palmqvist. « A review of data-driven approaches to predict train delays ». Transportation Research Part C: Emerging Technologies 148 (1 mars 2023): 104027.
- Romano, Yaniv, Evan Patterson, et Emmanuel Candes. « Conformalized Quantile Regression ». In Advances in Neural Information Processing Systems, Vol. 32. Curran Associates, Inc., 2019.