Attention Meets Post-hoc Interpretability: A Mathematical Perspective

Gianluigi Lopardo,¹ Frederic Precioso,¹ Damien Garreau²

¹Université Côte d'Azur - Inria ²Julius-Maximilians Universität Würzburg - CAIDAS

January 8, 2025

Where is Würzburg?

 Figure: (left panel) Würzburg is located in Northern Bavaria (right panel) Festung Marienberg (credits google maps / wikipedia)

Outline

1. Transformers

- 2. Post-hoc interpretability Gradient-based approaches Perturbation-based approaches Attention weights
- 3. Analysis on a simple model

4. Conclusion

1. Transformers

Introduction

▶ Context = natural language processing: from text input x ∈ X, predict y ∈ Y as f(x)
 ▶ Running example: sentiment analysis:

the selection on the menu is great and so is the food the service _____ **>** positive is not bad prices are fine

- ▶ $f = f_{\theta}$ corresponds to some architecture choice, and $\theta \in \Theta$ to the parameters
- $\theta^{\star} = \text{good parameter learned from data}$
- State-of-the-art toady: f_{θ} = attention¹-based model (a transformer²)
- **Goal of this section:** describe a simple transformer architecture

¹Bahdanau, Cho, Bengio, *Neural machine translation by jointly learning to align and translate*, ICLR, 2025 ²Vaswani et al., *Attention is all you need*, NeurIPS, 2017

Tokens

- **Notation:** $\xi \in \mathcal{X}$ is a document
- encoded for the computer as a sequence of tokens
- ▶ we identify tokens with elements of $\{1, ..., D\} = [D]$
- Several possibilities in practice:
 - individual letters (D = 100)
 - words (D = 100.000)
 - ▶ in-between (*e.g.*, BERT³ uses WordPiece, $^4 D = 30.000$)
- Example:

"DATAIA"
$$\mapsto$$
 [4, 1, 20, 1, 9, 1]

Special tokens: <UNK>, <CLS>, etc.

³Devlin et al., *BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding*, ACL Proc., 2019

⁴Wu et al., *Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation*, preprint, 2016

Token embeddings

- Summary from last slide: $\xi = \text{ ordered sequence of tokens } \xi_1, \dots, \xi_T \in [D]$
- Next step: vector representation of each token
- ▶ for each $t \in [T]$, token $\xi_t = j$ is embedded as

$$e_t := (W_e)_{:,j} + W_p(t) \in \mathbb{R}^{d_e},$$

where:

▶
$$W_e \in \mathbb{R}^{d_e imes D}$$
 matrix containing embeddings of all tokens

• $W_p : \mathbb{N} \to \mathbb{R}^{d_e}$ positional embedding

Typically, W_e is learned and W_p is set to something arbitrary

Example:

$$\begin{cases} W_p(t)_{2i} &= \cos(t/T_{\max}^{2i/d_e}) \\ W_p(t)_{2i-1} &= \sin(t/T_{\max}^{2i/d_e}) \,. \end{cases}$$

Keys, queries, values

Note: I am following

Phuong and Hutter, Formal Algorithms for Transformers, preprint, 2022 Padding until T_{max} with <UNK> token, embedded to $h + W_p(t)$

Next step: for all $t \in [t]$, map embeddings to

$$\begin{cases} k_t &:= W_k e_t + b_k \in \mathbb{R}^{d_{\text{att}}} & (\text{key}) \\ q_t &:= W_q e_t + b_q \in \mathbb{R}^{d_{\text{att}}} & (\text{query}) \\ v_t &:= W_v e_t + b_v \in \mathbb{R}^{d_{\text{out}}} & (\text{value}) \end{cases}$$

▶ matrices $W_k, W_q \in \mathbb{R}^{d_{\mathsf{att}} \times d_e}$, $W_v \in \mathbb{R}^{d_{\mathsf{out}} \times d_e}$ learned parameters

▶ bias vectors $b_k, b_q \in \mathbb{R}^{d_{\text{att}}}, b_v \in \mathbb{R}^{d_{\text{out}}}$ also learnable, set to zero for simplicity

Attention mechanism

▶ for a given query $q \in \mathbb{R}^{d_{\text{att}}}$, index *t* receives *attention*

$$\forall t \in T_{\max}, \qquad \alpha_t := \frac{\exp\left(q^\top k_t / \sqrt{d_{\mathsf{att}}}\right)}{\sum_{u=1}^{T_{\max}} \exp\left(q^\top k_u / \sqrt{d_{\mathsf{att}}}\right)},$$

softmax of the vector $(q^{ op}k_1,\ldots,q^{ op}k_{\mathcal{T}_{\max}})^{ op}$

- **Intuition:** if query "matches" with k_t , then α_t large
- ▶ this mechanism is at the core of the transformer architecture

	[CLS]	ai	iņ	paris	is	great	but	the	weather	is	bad
[CLS]·	0.11	0.19	0.00	0.04	0.14	0.16	0.00	0.00	0.00	0.04	0.17

Final output

 \blacktriangleright for a given query q, output

$$\widetilde{\mathbf{v}} := \sum_{s=1}^{T_{\max}} lpha_s \mathbf{v}_s \in \mathbb{R}^{d_{\mathrm{out}}}$$
 .

▶ In our simplified setting, q corresponds to the <CLS> token, $W_{\ell} \in \mathbb{R}^{1 \times d_{\text{out}}}$, and

$$f(x) := W_\ell \tilde{v} \in \mathbb{R}$$
.

Remark: we can deal with several heads:

$$\forall i \in [\mathcal{K}], \qquad \tilde{v}^{(i)} := \sum_{s=1}^{T_{\max}} \alpha_s^{(i)} v_s^{(i)} \in \mathbb{R}^{d_{\text{out}}},$$

and

$$f(x) := rac{1}{K} \sum_{i=1}^K W^{(i)}_\ell ilde{\mathbf{v}}^{(i)} \in \mathbb{R}$$
 .

Our model, in pictures

In practice

In reality, self-attention, meaning each token associated to value v

 *v*_t
 then layer-norm + small perceptron, several layers

Figure: transformer architecture from Vaswani et al. (2017)

2. Post-hoc interpretability

A (very brief) introduction to interpretability

- **Context:** automated systems are reaching human-level in many applications
- Problem: sometime performance is not the only metric (especially in critical applications)
- Interpretability methods: give insights to why a specific decision was taken
- this talk = local, post-hoc (single example, model already trained)
- **Example:** sentiment analysis, outline words that are important for the decision

Figure: Anchors outlining words supporting a positive prediction

2.1. Gradient-based approaches

Gradients

- **Simple idea:** take the gradient of prediction with respect to input
- Intuition: if feature is (positively) important, positive partial derivative
- Problem: documents are discrete objects
- **Solution:** rewrite *f* as a function of the embeddings, *i.e.*,

$$f(x) = g(e_1(x), e_2(x), \ldots, e_{\mathcal{T}_{\max}}(x))$$

▶ gradient-based approaches compute, for each token, $abla_{e_t} g \in \mathbb{R}^{d_e}$

Token-level measure of importance

> Problem: still complicated object, need to come back to token level

- several competing approaches:
 - ▶ take the mean (G-AVG)⁵
 - take the L^1 norm $(G-L1)^6$
 - take the L^2 norm (G-L2)⁷
 - ▶ take the dot-product with e_t (G×I)⁸
 - ▶ ...

Example: *L*² norm of the token gradients:

attention based explanations are popular but questionable

⁵Atanasova et al., *A diagnostic study of explainability techniques for text classification*, EMNLP, 2020 ⁶Li et al., *Visualizing and understanding neural models in NLP*, ACL Proc., 2016

⁷Poerner et al., *Evaluating neural network explanation methods using hybrid documents and morphosyntactic agreement*, ACL Proc., 2018

⁸Denil et al., *Extraction of salient sentences from labelled documents*, preprint, 2014

2.2. Perturbation-based approaches

Perturbation-based approaches

- Idea: remove words at random and look at how the prediction varies
- Example: LIME⁹
- ▶ recall $\xi = (\xi_1, ..., \xi_T) \in [D]^T$ document, f our model
- ▶ local dictionary [d] with d < D
- **Step 1:** create *n* perturbed samples X_1, \ldots, X_n by removing *s* words at random
- s follows uniform distribution on [d]
- the subset S of words to be removed is chosen uniformly
- words are removed with repetition

⁹Ribeiro et al., "Why should i trust you?" Explaining the predictions of any classifier, SIGKDD, 2016

Sampling

Figure: LIME sampling on a small example

Weights

- **Step 2:** give positive weights to the samples
- define $Z_i \in \{0,1\}^T$ as presence / absence of words
- 1 corresponds to the original document
- weights are defined by

$$\forall i \in [n], \qquad \pi_i := \exp\left(\frac{-\delta(\mathbbm{1}, Z_i)^2}{2\nu^2}\right) \,,$$

with $\nu > 0$ bandwidth parameter and δ the cosine distance

$$\delta(\pmb{a},\pmb{b}):=1-rac{\pmb{a}^{ op}\pmb{b}}{\|\pmb{a}\|\cdot\|\pmb{b}\|}\,.$$

Intuition: if perturbed sample far from ξ , $\delta(\mathbb{1}, X_i) \approx 1$, assign small weight

Local surrogate model

Step 3: local surrogate model

fit linear model on absence / presence of words:

$$\hat{eta}_n \in \operatorname*{arg\,min}_{eta \in \mathbb{R}^d} \left\{ \sum_{i=1}^n \pi_i (Y_i - eta^ op Z_i)^2 + \lambda \left\|eta
ight\|^2
ight\} \,,$$

where
$$Y_i = f(X_i)$$
 and $\lambda > 0$

Explaining a prediction with LIME

Figure: visualizing LIME output

2.3. Attention weights

Attention weights

- Another idea: look directly at attention weights¹⁰
- ▶ In our setting, attention wrt <CLS> token \Rightarrow look at attention weight of individual tokens
- What happens with several heads?
 - either take the average

$$\alpha\text{-}\mathsf{avg}_t := \frac{1}{K}\sum_{i=1}^K \alpha_t^{(i)}\,,$$

or the max¹¹

$$\alpha\operatorname{-max}_t := \max_{i \in [K]} \alpha_t^{(i)} \, .$$

▶ if several layers, further aggregation scheme required¹²

¹⁰Clark et al., What does BERT look at? An analysis of BERT's attention, Blackbox @ EMNLP, 2019 ¹¹Schwenke and Atzmueller, Show me what you're looking for: visualizing abstracted transformer attention for enhancing their local interpretability on time series data, FLAIRS, 2021

¹²Mylonas et al., An attention matrix for every decision: faithfulness-based arbitration among multiple attention-based interpretations of transformers in text classification, Data Mining and Knowledge Discovery, 2024

Post-hoc interpretability III: attention, in pictures

Figure: attention patterns inside a single-layer transformer

Is attention explanation?

- tempting to rely on these coefficients: they are really used by the model
- **But**, some dissident voices:¹³
 - ▶ if attention is explanation, attention coefs should correlate with feature importance
 - counterfactual attention weight configuration should change prediction
- the debate is not settled
- ▶ there are criticisms regarding experimental setting of Jain and Wallace¹⁴
- not many theoretical contributions
- related work show that single-layer attention models can get near-perfect accuracy with un-informative attention pattern^{15,16}

¹³Jain and Wallace, Attention is not explanation, NAACL Proc., 2019

¹⁴Wiegreffe and Pinter, Attention is not not Explanation, EMNLP, 2019

¹⁵Wen et al., *Transformers are uninterpretable with myopic methods: a case study with bounded Dyck grammars*, NeurIPS, 2024

¹⁶Cui, Behrens, Krzakala, Zdeborová, A phase transition between positional and semantic learning in a solvable model of dot-product attention, preprint, 2024

Is attention explanation?, ctd.

- Histogram task: count number of times token appears in the sequence¹⁷
- **Example:** "DATAIAIAIA" \mapsto [1, 5, 1, 5, 3, 5, 3, 5, 3, 5]
- Architecture: single-layer with tied weights
- two vastly different local minima found, one with un-informative attention pattern

figure obtained running code from Cui et al., 2024

¹⁷Weiss, Goldberg, Yohav, *Thinking like transformers*, ICML, 2021

3. Analysis on a simple model

Summary so far

- Many different methods providing explanations
- different results even on single-layer transformer:

G-avg:	attention	based	explanations	are	popular	but	questionable
G-I1:	attention	based	explanations	are	popular	but	questionable
G-I2:	attention	based	explanations	are	popular	but	questionable
G×I:	attention	based	explanations	are	popular	but	questionable
lime:	attention	based	explanations	are	popular	but	questionable
lpha-avg:	attention	based	explanations	are	popular	but	questionable
α -max:	attention	based	explanations	are	popular	but	questionable

- **Figure:** different explainers yield different explanations
- Our work: what should we use?
- starting point = attention coefficients = α_t
- Problem: no dependency in the linear layer / values (!)

Gradient-based: closed-form expression

- **Recall:** we are looking at $\nabla_{e_t} g$
- straightforward computations yield:

Theorem (Lopardo, Precioso, G., '24): The gradient of our simple model with respect to token e_t is given by

$$abla_{e_t} g(x) = lpha_t W_{\mathsf{v}}^\top W_{\ell}^\top + rac{lpha_t}{\sqrt{d_{\mathsf{att}}}} W_{\ell} \left(\mathsf{v}_t - \sum_{s=1}^{T_{\mathsf{max}}} lpha_s \mathsf{v}_s
ight) W_k^\top q \in \mathbb{R}^{d_e}$$

- **•** Main insight: token contributes if $\alpha_t \neq 0$ and v_t deviates from average
- **Remark (i):** easy corollary for K heads by linearity
- **Remark (ii):** straightforward derivations for average, L^1 and L^2 norms, etc.

Additional notation

- much more challenging analysis for LIME
- set h the index for the <UNK> token
- \blacktriangleright corresponding key / value vectors for <UNK> token at position t are

$$egin{cases} k_{h,t} &:= W_k h + W_k W_
ho(t) \in \mathbb{R}^{d_{ ext{att}}} \ v_{h,t} &:= W_
u(h + W_
ho(t)) \in \mathbb{R}^{d_{ ext{out}}} \,. \end{cases}$$

define further

$$g_{h,t} := \exp\left(q^{ op} k_{h,t}/\sqrt{d_{\mathsf{att}}}
ight) \,,$$

and

$$\alpha_{h,t} := \frac{g_{h,t}}{\sum_{u} g_{h,u}} \, .$$

Intuition: attention coefficient for all <UNK> tokens

Perturbation-based, main result

with these notation:

Theorem (Lopardo, Precioso, G., '24): Assume that $d = T = T_{\max}^{\varepsilon}$, with $\varepsilon \in (0, 1)$. Assume further that there exist positive constants 0 < c < C such that, as $T \to +\infty$, for all $t \in [T_{\max}]$, $\max(|v_t|, |v_{h,t}|) \leq C$, and $c \leq \min(g_t, g_{h,t}) \leq C$.

$$orall j \in [d], \qquad eta_j^\infty pprox rac{3}{2} \sum_{t=1}^{T_{ ext{max}}} W_\ell \left(lpha_t m{v}_t - lpha_{h,t} m{v}_{h,t}
ight) \mathbbm{1}_{\xi_t=j}.$$

- approximate expression of LIME coefficients for a single-layer transformer
- **•** Main insight: token contributes if $\alpha_t v_t$ deviates from "average"
- Remark: straightforward extension to several heads

Experimental check

Figure: boxplots = 5 runs of LIME, red crosses = approximation. T = d = 99 in this example

Sketch of proof (i)

we use previous work doing the analysis in the asymptotic setting:¹⁸

Theorem (Mardaoui, G., '21): take $\lambda = 0$, assume f is bounded, then $\hat{\beta} \xrightarrow{\mathbb{P}} \beta^{f}$, where β^{f} is defined as

$$\forall j \in [d], \quad \beta_j^f = c_d^{-1} \left\{ \sigma_1 \mathbb{E} \left[\pi f(X) \right] + \sigma_2 \mathbb{E} \left[\pi Z_j f(X) \right] + \sigma_3 \sum_{\substack{k=1\\k \neq j}}^d \mathbb{E} \left[\pi Z_k f(X) \right] \right\}.$$

Here, X has the distribution of the perturbed document described previously, and c_d , $\sigma_1, \sigma_2, \sigma_3$ have explicit expressions.

Intuition: weighted least squares \rightarrow closed-form

¹⁸Mardaoui and Garreau, An analysis of LIME for text data, AISTATS, 2021

Sketch of proof (ii)

▶ in the large bandwidth regime, expression simplifies somewhat:

Corollary (Mardaoui and G., '21): same assumptions, $\nu \to +\infty$, then β_i^f converges to

$$\beta_j^{\infty} = 3\mathbb{E}\left[f(X) \mid j \notin S\right] - \frac{3}{d} \sum_k \mathbb{E}\left[f(X) \mid k \notin S\right],$$

where S is the random set defined in the sampling scheme.

very challenging to deal with this expectation (f non-linear and complicated distribution)

we resort to approximations

Sketch of proof (iii)

Crux of the proof: approximate

$$\mathbb{E}\left[f(X) \mid j \notin S\right] = \mathbb{E}\left[\sum_{t=1}^{T_{\max}} A_t V_t \mid \ell \notin S\right] = \sum_{t=1}^{T_{\max}} \mathbb{E}\left[\frac{G_t V_t}{\sum_{u=1}^{T_{\max}} G_u} \mid \ell \notin S\right],$$

where A_t and V_t are the random version of attention / values

Proof technique: split expectation according to |S| = s, then approximate each piece using the following:

Lemma: Let X and Y be two random variables with finite variance. Assume that there exist two positive constants c and C such that $|X| \le C$ and $cn \le Y \le Cn$ a.s. Then

$$\mathbb{E}\left[\frac{X}{Y}\right] - \frac{\mathbb{E}\left[X\right]}{\mathbb{E}\left[Y\right]} \le \frac{C \operatorname{Var}\left(Y\right)}{c^3 n^3} + \frac{C^2 \sqrt{\operatorname{Var}\left(Y\right)}}{c^2 n^2}$$

Sketch of proof (iv)

▶ finally, computation of expectation and variance of

$$\mathcal{H}_{\mathcal{S}} := \sum_{i} \left\{ a_{i} \mathbb{1}_{i \notin \mathcal{S}} + b_{i} \mathbb{1}_{i \in \mathcal{S}} \right\} \,,$$

conditionally to $|\mathcal{S}| = s$ and $\ell \notin \mathcal{S}$

Lemma: Let H_s be as before, then

$$\mathbb{E}_s\left[\mathcal{H}_S|\ell
otin S
ight] = rac{n-1-s}{n-1}\sum_i \mathsf{a}_i + rac{s}{n-1}\sum_i b_i + rac{s}{n-1}(\mathsf{a}_\ell - b_\ell)\,,$$

and

$$\mathsf{Var}_{s}(\mathsf{H}_{\mathsf{S}} \mid \ell \notin \mathsf{S}) = \frac{ns(n-s-1)}{(n-1)(n-2)} \left[\widehat{\mathsf{Var}} \left(\mathsf{a} - \mathsf{b} \right) - \frac{1}{n-1} \left(\mathsf{a}_{\ell} - \mathsf{b}_{\ell} - \left(\overline{\mathsf{a}} - \overline{\mathsf{b}} \right) \right)^{2} \right] \,.$$

4. Conclusion

Conclusion

Summary:

- single-layer attention-based model
- closed-form or exact approximations for token-importance measure
- methods are very un-alike no clear recommended choice

Main reference:

Lopardo, Precioso, Garreau, Attention Meets Post-hoc Interpretability: A Mathematical Perspective, ICML, 2024

Future directions:

- Anchors¹⁹ meets attention (existing theoretical framework²⁰)
- more realistic architecture (skip connection, non-linearities, more layers)

¹⁹Ribeiro, Singh, Guestrin, Anchors: High-precision model-agnostic explanations, AAAI, 2018
 ²⁰Lopardo, Precioso, Garreau, A sea of words: an in-depth analysis of anchors for text data, AISTATS, 2023

Thank you for your attention!