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Introduction: exemples

• Données de population : yi ∼ N(µ, σ) i = 1, . . . ,N, i.i.d.

• N = 1000, population finie

• Échantillon S de taille n = 200 =⇒ n

N
= 0.2

• Nous souhaitons estimer la moyenne µ.

• Considérons différents plans d’échantillonnage.
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Échantillonnage aléatoire simple sans remise

• Estimateur

ȳ :=
1

n

∑
i∈S

yi
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Échantillonnage aléatoire simple sans remise

• Estimateur
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1
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∑
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• Estimateur de variance

V̂(ȳ) :=
(
1− n

N

) σ̂2

n
, avec σ̂2 :=

1

n − 1

∑
i∈S

(
yi − ȳ

)2
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Échantillonnage aléatoire simple sans remise
• Estimateur
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1
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∑
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• Estimateur de variance

V̂(ȳ) :=
(
1− n

N

) σ̂2

n
, avec σ̂2 :=

1

n − 1

∑
i∈S

(
yi − ȳ

)2

• V̂(ȳ) sans biais?

=⇒ V̂(ȳ) est biaisé! Relative bias = −20%
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Échantillonnage aléatoire simple avec remise
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Échantillonnage aléatoire simple avec remise
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Échantillonnage de Poisson

• Échantillon ≡ sélectionner chaque unité avec une probabilité n/N
indépendamment.

• Estimateur

ȳ :=
1

n

∑
i∈S

yi

• Estimateur de variance

V̂(ȳ) :=
(
1− n

N

) 1

n2

∑
i∈S

y2i
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V̂(ȳ) :=
(
1− n

N

) 1

n2

∑
i∈S

y2i
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Échantillonnage aléatoire simple sans remise

• Ignorons la “Correction pour population finie”:

=⇒ Estimateur de variance

V̂(ȳ) :=
σ̂2

n
, c’est-à-dire, même estimateur qu’avec remise

• Is V̂(ȳ) sans biais?
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• Is V̂(ȳ) sans biais?
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Échantillonnage aléatoire simple sans remise

• Ignorons la “Correction pour population finie”:

=⇒ Estimateur de variance

V̂(ȳ) :=
σ̂2

n
, c’est-à-dire, même estimateur qu’avec remise

• Is V̂(ȳ) sans biais?

=⇒ V̂(ȳ) est sans biais!

• Malgré que
▶ Échantillonnage sans remise
▶ Nous avons une fraction d’échantillonnage importante (n/N = 0.2)
▶ La population est finie (N = 1000). Cependant, pas de “correction de

population finie” !
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Je reviendrai sur ces exemples plus tard.

Considérons une “approche inconditionnelle”.
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Approche inconditionnelle

• Une distribution ξ qui génère les données de population:

Y := (y1, . . . , yi , . . . , yN)⊤ ∼ distribution ξ

• {y1, . . . , yN} ne sont pas nécessairement i.i.d.

• On pourrait qualifier ξ de “modèle” au sens général.

• Le plan d’échantillonnage P(s) spécifie la distribution de
l’échantillon S , qui pourrait être informatif

• Deux processus aléatoires:

Une distribution ξ qui génère Y

Une sélection aléatoire d’un échantillon S ⊂ U = {1, . . . ,N}

• Approche hybride basée sur l’échantillonnage et un “modèle”
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Approche inconditionnelle

• Deux paramètres cibles possibles :

▶ spécifié par la distribution ξ, par exemple θ0 est l’espérance de la
distribution ξ

▶ θN une fonction de Y , par exemple θN =
1

N

∑
i∈U

yi

• Estimation ponctuelle: Un estimateur θ̂ sans biais (sous le plan
d’échantillonnage) de θN est généralement sans biais pour θ0:

EξEP [θ̂ | Y ] = Eξ[θN ] = θ0

• Pour l’estimation de variance, la distinction entre θ0 et θN est
cruciale

Berger (Univ. Southampton) Variance inconditionnelle 12 février 2026 9 / 52



Approche inconditionnelle: θN est la cible

• Soit θ̂ un estimateur sans biais (sous le plan d’échantillonnage) de θN

• La variance inconditionnelle:

V(θ̂ − θN) = EξVP(θ̂ − θN | Y ) + VξEP(θ̂ − θN | Y )

= EξVP(θ̂ − θN | Y ) + 0

= EξVP(θ̂ | Y )

• Tout estimateurs de variance sans biais V̂P(θ̂ | Y ) basé sur le
plan d’échantillonnage, est un estimateur sans biais de la
variance inconditionnelle

EξEP [V̂P(θ̂ | Y ) | Y ] = EξVP(θ̂ | Y ) = V(θ̂ − θN)
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Approche inconditionnelle: θN est la cible
• Une approche basée sur le plan d’échantillonnage est valable

• On constate que la distribution/modèle ξ est ignorable, puisque ξ
ne joue aucun rôle dans l’estimation de la variance.

• Notez que les yi sont des variables aléatoires !

▶ La caractéristique principale des approches basées sur le plan
d’échantillonnage est le fait que θN est la cible

▶ Le fait que les données Y (les yi ) soient fixes (pas aléatoires)
n’est pas la caractéristique principale des approches basées sur
le plan d’échantillonnage !

• Puisque nous estimons VP(θ̂ | Y ), les données Y peuvent être
considérées comme fixes, du fait du conditionnement. Cela ne
signifie pas pour autant que les données Y sont fixes (et non
aléatoires) !
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Exemple: quantiles

• L’estimation de la variance d’un quantile α implique une linéarisation

V̂P
(
Ŷα

)
≈ V̂P

( 1

N

∑
i∈S

ẑi
πi

)
,

où ẑi =
1

N f (Ŷα)

{
δ(yi ⩽ Ŷα − α

}

• f (·) est la densité de la distribution de yi .

Densité =⇒ Les yi sont aléatoires et non constantes.
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Approche inconditionnelle: échantillonnage non-informatif

• Échantillonnage non-informatif: Y ⊥⊥ S , c’est à dire ξ et P(s) sont
des processus indépendants:

• Soit θ̂ un estimateur sans biais sous le modèle de θ̃, qui pourrait être
θN ou θ0.

• ξ et P peuvent être inversés:

V(θ̂ − θ̃) = EPVξ(θ̂ − θ̃ | S) + VPEξ(θ̂ − θ̃ | S)

= EPVξ(θ̂ − θ̃ | S) + 0

• Tout estimateurs de variance sans biais V̂ξ(θ̂ − θ̃ | S) basé sur
un modèle, est un estimateur sans biais de la variance
inconditionnelle

EPEξ[V̂ξ(θ̂ − θ̃ | S) | Y ] = EPVξ(θ̂ − θ̃ | Y ) = V(θ̂ − θ̃)
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Approche inconditionnelle: échantillonnage non-informatif

• Une approche basée sur un modèle est valable

• On constate que le plan d’échantillonnage P(s) est ignorable, car
P(s) n’intervient pas dans l’estimation de la variance.

• Notez que l’échantillon reste une variable aléatoire !

▶ La caractéristique principale des approches basées sur des
modèles est l’échantillonnage non informatif.

▶ Le fait que les données S ne soient pas aléatoires n’est pas la
caractéristique clef des approches basées sur des modèles !

• Puisque nous estimons Vξ(θ̂ − θ̃ | S), l’échantillon S peut être
considéré comme fixe, du fait du conditionnement. Cela ne signifie
pas pour autant que l’échantillon S est fixes (et non aléatoires) !
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Approche inconditionnelle: échantillonnage non-informatif

• ξ peut impliquer un modèle de régression pour les données Y afin
d’estimer Vξ(θ̂ − θ̃ | S), par exemple pour l’estimation de petits
domaines ; mais le modèle régression n’est pas la caractéristique
principale.

• La caractéristique principale de l’approche basée sur un modèle n’est
pas la modélisation par régression, mais l’échantillonnage non
informatif.

• Les approches basées sur des modèles devraient être appelées
“échantillonnage non informatives” pour mettre en évidence la
caractéristique clef
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Approche inconditionnelle: échantillonnage non-informatif

• Sous un échantillonnage non informatif, nous pouvons estimer θN
(prédiction) ou θ0.

• Lorsque θ0 est la cible, cela ne signifie pas que nous devons envisager
des approches basées sur un modèle (non informatives) !
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Approche inconditionnelle: échantillonnage informatif

• Nous ne pouvons pas échanger ξ et P, c’est-à-dire que nous
utilisons V ≡ EξVP + EξVP , et pas EPVξ + EPVξ

• Lorsque la cible est θN : =⇒ approches basées sur le plan
d’échantillonnage

V(θ̂ − θN) = EξVP(θ̂ − θN | Y ) + VξEP(θ̂ − θN | Y )

= EξVP(θ̂ − θN | Y ) + 0

Problème résolu lorsque la cible est θN , inutile d’en discuter
davantage.

• Cibler θN est plus approprié lorsque l’on s’intéresse à une inférence
descriptive.

• Inférence analytique : que signifie θN ? θ0 est plus logique.
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Approche inconditionnelle: échantillonnage informatif

• Lorsque θ0 est la cible:

V(θ̂ − θ0) = EξVP(θ̂ − θ0 | Y ) + VξEP(θ̂ − θ0 | Y )

Maintenant VξEP(θ̂ − θ0 | Y ) ̸= 0! Les estimateurs de variance
traditionnels basés sur le plan d’échantillonnage sont biaisés !

Contribution : Estimation de la variance sous échantillonnage
informatif, lorsque θ0 est la cible.

• Il existe de nombreuses situations où la cible devrait être θ0:
▶ θ0 est un paramètre de régression (inférence analytique)
▶ Estimation de petits domaines
▶ Estimation de quantiles?
▶ Lorsque θ0 = EξEP(θ̂). Indice des prix à la consommation?
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Exemples de l’introduction

• yi ∼ N(µ, σ)

• La cible était θ0 = µ, et non θN =
1

N

∑
i∈U

yi

=⇒ l’estimateur de variance sous le plan d’échantillonnage sont
biaisés

• Sous un échantillonnage aléatoire simple sans remise:

θ̂ :=
1

n

∑
i∈S

yi estimateur sans bias de θ0 = µ

V̂(θ̂ ) :=
σ̂2

n
, estimateur sans biais de V(θ̂ )

V(θ̂ ) := Eξ

[
VP

(
θ̂ | Y

)]
+ Vξ

[
EP

(
θ̂ | Y

)]
·

• V(θ̂ ) a 2 termes et V̂(θ̂ ) a 1 terme ?!?!?
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Échantillonnage aléatoire simple sans remise

• yi ∼ N(µ, σ) i.i.d

• VP(θ̂ | Y
)
=

(
1− n

N

)S2

n
, où S2 =

1

N − 1

∑
i∈U

(yi − θN)
2

• EξVP(θ̂ | Y
)
=

(
1− n

N

)σ2

n
=

σ2

n
− σ2

N
, car θ0 = µ est la cible

• VξEP(θ̂ | Y
)
= Vξ(θN) =

σ2

N

V(θ̂ ) := Eξ

[
VP

(
θ̂ | Y

)]
+ Vξ

[
EP

(
θ̂ | Y

)]
=

σ2

n
− σ2

N
+

σ2

N
=

σ2

n

• La correction pour population finie disparâıt à cause de
VξEP(θ̂ | Y

)
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Échantillonnage aléatoire simple sans remise

• Le terme (1− n/N) est la principale raison du biais de l’estimateur de
variance basé sur le plan

• Le biais est −σ2N−1 = −VξEP(θ̂ ) à cause du terme (1− n/N)

• L’interprétation correcte de (1− n/N) est

Le rôle du terme (1−n/N) est de réduire la variance de VξEP(θ̂ ),
afin de compenser le fait que la quantité d’intérêt est θN , plutôt
que θ0
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Correction de population finie?

• Cette correction n’est pas due au fait que N soit fini, car (1− n/N)
doit être remplacé par 1, lorsque θ0 est le paramètre cible, même
lorsque N est fini.

• Cette correction est nécessaire lorsque θN est le paramètre cible.

• Qualifier (1− n/N) de “correction de population finie” est
trompeur, car cela n’a rien à voir avec le fait que N soit finie.
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Correction de population finie?

• Qualifier (1− n/N) de “correction de population finie” est
trompeur

Nous devrions l’appeler “Correction de population fixe”. Le
terme “fixe” est utilisé pour souligner que la correction doit être
appliquée lorsque θN est la cible et que nous devons utiliser une
variance conditionnelle étant donné Y , en traitant les données
Y comme fixes.

• “Correction pour grande fraction d’échantillonnage” est aussi adéquat

• “L’inférence en population finie” doit être comprise comme le fait que
θN est la cible et que Y est considéré comme fixe (conditionnement
sur Y ). L’expression “inférence en population fixe” est plus
appropriée
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Généralisation

• Les principes développés jusqu’à présent s’appliquent à des plans
d’échantillonnage plus élaborés, tels que
▶ Échantillonnage à probabilité inégale sans remise
▶ Échantillonnage stratifiée
▶ Échantillonnage à plusieurs degré
▶ Échantillonnage systématique ordonné

• Nous supposons un échantillonnage informatif

• Inférence analytique, car nous nous intéressons a θ0

• Extension aux variables auxiliaires : voir l’article

• Échantillonnage de Poisson informatif : voir l’article
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Échantillonnage à probabilité inégale sans remise

• (yi , πi )
⊤ ∼ distribution bivariée ξ

• θ0 est la solution (supposée unique) de

Eξ

[
g(y , θ)

]
= 0 iff θ = θ0·

• θ̂ solution (supposée unique) de l’équivalent empirique

Γ̂(θ) :=
∑
i∈S

1

πi
g(yi , θ) = 0·

• Soit ϱi := g(yi , θ0).

• πi et ϱi peuvent être dépendant (échantillonnage informatif).
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Hypothèses
• N/n < ∞ est borné, lorsque n → ∞

• d :=
∑
i∈U

πi (1− πi ) → ∞

• πij =πi

[
πj

{
1−

[
1 + o(1)

]
(1− πi )(1− πj)d

−1
}]1−δij

,

où δij est le delta de Kronecker

Entropie élevée. Expression la plus courante pour πij (Hájek, 1964)

• Indépendance ϱi ⊥⊥ ϱj et πi ⊥⊥ πj , pour i ̸= j , où ϱi := g(yi , θ0).

Indépendance entre les ϱi , pas entre les yi !

• 1

N

∑
i∈U

Vξ(ϱi ) < ∞·

• πij ⩾ πiπj , a.s. ∀i , j ·
• Hypothèses asymptotiques standard dans un contexte de population
finie
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Estimation de la variance
• Considérons l’estimateur de variance de Hansen & Hurwitz

(1943):

V̂[Γ̂(θ)] =
∑
i∈S

1

π2
i

g(yi , θ)
2 − 1

n

{∑
i∈S

1

πi
g(yi , θ)

}2
·

• Asymptotiquement sans biais:
n

N2

{
EξEPV̂[Γ̂(θ0)]− V[Γ̂(θ0)]

}
= o(1)

• Il n’est pas nécessaire d’estimer séparément
EξVP [Γ̂(θ) | Y ] et VξEP [Γ̂(θ) | Y ]

=⇒ Théorème de Taylor:

V̂(θ̂ ) :=
{∂Γ̂(θ̂ )

∂θ̂

}−2
V̂[Γ̂(θ̂ )],
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L’estimateur de variance de Hansen & Hurwitz (1943)

• L’estimateur de variance de Hansen & Hurwitz (1943) est sans biais
sous le plan, lorsque l’échantillon est sélectionné avec remise et que
θN est la cible.

• Cependant, lorsque θ0 est la cible, cet estimateur est biaisé sous un
plan d’échantillonnage avec remise

• Cet estimateur n’est pas limité à l’échantillonnage avec remise

• Il est asymptotiquement sans biais sous échantillonnage
sans remise avec de grandes fractions d’échantillonnage,
lorsque θ0 est la cible
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L’estimateur de variance de Hansen & Hurwitz (1943)

• L’absence de FPC et de πij n’est pas due au fait que n/N est
asymptotiquement négligeable, ni à une hypothèse “avec remise”

• La variance est asymptotiquement sans biais car θ0 est la cible

• Interprétation de πij :

Les πij sont nécessaires lorsque θN est la cible, et non parce que
la population est finie
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Échantillonnage stratifié à plusieurs degrés

• Un échantillon S de n grappes est sélectionné sans remise avec des
probabilités inégales πi

• Au sein de chaque grappe Ui échantillonnée (i ∈ S), un échantillon Si
de mi unités est sélectionné
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Échantillonnage stratifié à plusieurs degrés
• θ0 ∈ Rdθ est défini par une “condition de moment multivariée”,
c’est-à-dire

Eξ

{
g(y ,θ)

}
= 0dg , iff θ = θ0,

• g(y ,θ) ∈ Rdg et 0d est le d-vecteur de 0.

• Le modèle peut être sur-spécifié, c’est-à-dire dg ⩾ dθ, afin d’inclure
des contraintes de calibration (voir l’article).

• L’estimateur ponctuel θ̂ est la solution de

Γ̂(θ) :=
∑
i∈S

1

πi
ρ̂i (θ) = 0dg ,

avec

ρ̂i (θ) :=
∑
j∈Si

1

πj |i
gj |i (θ), gj |i (θ) := g(yj ,θ), pour j ∈ Ui ,
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Estimateur de variance stratifié “grappe ultime” de
Hansen & Hurwitz (1943)

V̂
{
Γ̂(θ)

}
:=

H∑
h=1

V̂
{
Γ̂h(θ)

}
, avec Γ̂h(θ) :=

∑
i∈Sh

1

πi
ρ̂i (θ),

où

V̂
{
Γ̂h(θ)

}
:=

∑
i∈Sh

1

π2
i

ρ̂i (θ) ρ̂i (θ)
⊤ − 1

nh
Γ̂h(θ)Γ̂h(θ)

⊤,

• Asymptotiquement sans biais =⇒ Théorème de Taylor:

V̂(θ̂) :=
{∂Γ̂(θ)

∂θ

∣∣∣
θ=θ̂

}−1
V̂
{
Γ̂(θ̂)

} {∂Γ̂(θ)

∂θ

∣∣∣
θ=θ̂

}−1⊤
·

• Inutile d’estimer les variances a l’intérieur des grappes (Gustave
(Chevalier & Richer, 2023)), même lorsque n/N est grand
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Hypothèse clef pour l’absence de biais asymptotique

• Indépendance entre les grappes, c’est-à-dire

gj |i (θ0) ⊥⊥ gℓ|k(θ0) et πi ⊥⊥ πk , ∀ j ∈ Ui , ℓ ∈ Uk et i ̸= k .

avec gj |i (θ) := g(yj ,θ)

• Nous pourrions avoir une dépendance au sein des grappes

• Entropie élevée (Hájek, 1964)

• Il n’est pas nécessaire d’utiliser des effets aléatoires ni d’estimer la
variance au sein des grappes
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Ordered systematic sampling

• S’il y a une tendance, alors les yi ne peuvent pas être i.i.d.

• L’hypothèse d’entropie élevée est erronée, car certains des πij sont
nuls

• Une solution consiste à sur-spécifier la fonction d’estimation en se
basant sur un modèle de tendance, tel que :

yi = α0 + ℓiβ0 + ei ,

où ℓi est le label à l’intérieur de U de l’unité i ∈ S
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Échantillonnage systématique ordonné
• Une fonction d’estimation sur-spécifiée peut être utilisée,

c’est-à-dire

g(yi ,θ) =
{
ε(yi ,θ)− µ+ α+ µℓβ, ε(yi ,θ), ℓi ε(yi ,θ)

}⊤
,

avec
ε(yi ,θ) := yi − α− ℓiβ,

θ := (µ, α, β)⊤,

µℓ := (N + 1)/2, la moyenne de la population des ℓi ,

µ0 := Eξ(y), le paramètre cible,

(α0, β0)
⊤ un paramètre de nuisance

• g(yi ,θ0) sont i.i.d., malgré le fait que les yi ne soient pas i.i.d.

• L’échantillonnage systématique aléatoire et l’échantillonnage
systématique ordonné sont équivalents, car i.i.d.
=⇒ Entropie large =⇒ variance de Hansen & Hurwitz (1943)
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Numerical example

• yi ∼ N(10, sd = 2) ⇒ θ0 = 10

• p(S) = échantillonnage de Chao

• n = 100, 0.05 ⩽ f =
n

N
⩽ 0.7

• 0 ⩽ cor(yi , πi ) ⩽ 0.9

• Population finie N = n/f
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Biais relatifs

cor(yi , πi ) = 0.4

Variance de Hansen & Hurwitz (1943)

Variance de Horvitz & Thompson (1952): V̂P(θ̂ )

Berger (Univ. Southampton) Variance inconditionnelle 12 février 2026 37 / 52



Biais relatifs pour différentes corrélations

La corrélation n’a aucun effet sur les biais.

Variance de Hansen & Hurwitz (1943)

Variance de Horvitz & Thompson (1952): V̂P(θ̂ )
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Échantillonnage à deux degrés

• Données générées à partir d’un modèle à effets aléatoires

Yj |i = α0 + β0 xj |i + ϵj |i , avec j ∈ Ui et α0 = β0 = 1,

ϵj |i = ui + eji ·

• Supposons que nous souhaitions tester H0 : θ0 = θ̃ contre
Ha : θ0 ̸= θ̃, où θ̃ = (1, 1)⊤. Niveau α = 5%

• Statistique de pivot:

r(θ̃) := Γ̂(θ̃)⊤V̂
{
Γ̂(θ̃)

}−1
Γ̂(θ̃)

tend en distribution vers une distribution χ2 avec dθ degrés de liberté,
sous H0.

• Plus simple que les ajustements de Rao & Scott (1987)
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Échantillonnage à deux degrés. Tailles observées (%)

f = n/N
Statistique de test ρ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Proposé 0.0 6.1 6.3 5.5 5.9 4.5 5.5 6.1 5.8

0.2 5.6 5.3 5.1 5.2 4.4 5.9 5.5 5.4
0.4 6.6† 4.3 6.3 5.3 4.9 5.6 5.0 5.1
0.6 5.1 5.5 6.2 6.3 6.0 6.1 5.0 5.1
0.8 5.6 4.3 5.7 5.6 5.6 5.6 5.4 4.8
0.9 4.5 4.6 4.3 6.8† 6.2 5.6 4.9 5.5

Rao & Scott 1 0.0 5.6 6.5† 5.2 5.5 4.4 5.5 5.6 5.0
0.2 5.6 5.3 5.3 4.0 5.9 5.1 6.0 5.4
0.4 6.6† 5.9 7.1† 7.0† 5.5 8.3† 8.2† 5.7
0.6 6.5† 7.1† 8.0† 8.3† 7.1† 8.6† 6.9† 9.8†

0.8 8.1† 6.4† 8.3† 9.2† 7.8† 8.1† 9.6† 8.0†

0.9 6.1 8.2† 7.4† 8.5† 8.5† 7.8† 8.3† 8.5†

Rao & Scott 2 0.0 5.6 6.5† 5.2 5.5 4.4 5.5 5.6 5.0
0.2 5.6 5.3 3.6† 3.2† 5.9 5.1 6.0 5.4
0.4 6.6† 3.5† 7.1† 7.0† 3.1† 8.3† 8.2† 3.4†

0.6 6.5† 7.1† 8.0† 8.3† 7.1† 8.6† 6.9† 9.8†

0.8 8.1† 2.4† 8.3† 9.2† 7.8† 8.1† 9.6† 8.0†

0.9 6.1 8.2† 3.2† 8.5† 8.5† 7.8† 8.3† 8.5†

† Taille significativement différente de 5%: p-valeur < 0.05.
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Échantillonnage systématique ordonné

• yi = 5 + (i − 1)(N − 1)−1 + εi , où εi ∼ N(0, σ) i.i.d.

• C’est-à-dire yi suit une tendance linéaire.

• La valeur différente de σ permet de contrôler la force de la tendance

• Les corrélations ρyπ entre πi et yi sont de 0, 2, 0, 4 et 0, 7.

• n = 500

• Population de taille N = round(n/f ), où f = 0.05, 0.2 et 0.4.
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Biais relatifs pour différentes corrélations: n/N = 0.05

σ

Variance de Hansen & Hurwitz (1943) surspécifié
Variance de Hansen & Hurwitz (1943)
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Biais relatifs pour différentes corrélations: n/N = 0.2

σ

Variance de Hansen & Hurwitz (1943) surspécifié
Variance de Hansen & Hurwitz (1943)
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Biais relatifs pour différentes corrélations: n/N = 0.4

σ

Variance de Hansen & Hurwitz (1943) surspécifié
Variance de Hansen & Hurwitz (1943)
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Couvertures pour différentes corrélations: n/N = 0.05

σ

Variance de Hansen & Hurwitz (1943) surspécifié
Variance de Hansen & Hurwitz (1943)
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Couvertures pour différentes corrélations: n/N = 0.2

σ

Variance de Hansen & Hurwitz (1943) surspécifié
Variance de Hansen & Hurwitz (1943)
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Couvertures pour différentes corrélations: n/N = 0.4

σ

Variance de Hansen & Hurwitz (1943) surspécifié
Variance de Hansen & Hurwitz (1943)
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Conclusion

• Le choix entre les approches basées sur le plan et les approches basées
sur les modèles ne doit pas être guidé par

▶ Le fait que l’on suppose les yi fixes ou aléatoires

▶ Le fait que l’on traite l’échantillon comme fixe ou aléatoire

• Ces questions sont hors de propos
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Conclusion

Deux questions clefs:

▶ L’échantillonnage est-il informatif ?

▶ Quel est le paramètre cible ? θN ou θ0 ?
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▶ L’échantillonnage est-il informatif ?

▶ Quel est le paramètre cible ? θN ou θ0 ?

• Si l’échantillonnage n’est pas informatif: variance basée sur le
plan, si la cible est θN ou variance basée sur le modèle (avec des
hypothèses de distribution supplémentaires) si la cible est θN ou θ0
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• Si l’échantillonnage n’est pas informatif: variance basée sur le
plan, si la cible est θN ou variance basée sur le modèle (avec des
hypothèses de distribution supplémentaires) si la cible est θN ou θ0

• Si l’échantillonnage est informatif et la cible est θN
=⇒ Variance traditionnels basés sur le plan (Gustave (Chevalier &
Richer, 2023))
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Conclusion

Deux questions clefs:

▶ L’échantillonnage est-il informatif ?

▶ Quel est le paramètre cible ? θN ou θ0 ?

• Si l’échantillonnage n’est pas informatif: variance basée sur le
plan, si la cible est θN ou variance basée sur le modèle (avec des
hypothèses de distribution supplémentaires) si la cible est θN ou θ0

• Si l’échantillonnage est informatif et la cible est θN
=⇒ Variance traditionnels basés sur le plan (Gustave (Chevalier &
Richer, 2023))

• Si l’échantillonnage est informatif et la cible est θ0
=⇒ Variance de Hansen & Hurwitz (1943)
=⇒ Variance basé sur le plan n’a aucun sens et est beaucoup plus
compliquée
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Conclusion

Le rôle du terme (1−n/N) est de réduire la variance de VξEP(θ̂ ),
afin de compenser le fait que la quantité d’intérêt est θN , plutôt
que θ0

• Qualifier (1− n/N) de “correction pour population finie” est
trompeur, car cela n’a rien à voir avec le fait que la population est
finie.

• Nous devrions l’appeler “correction de population fixe”. Le mot
“Fixe” est utilisé pour souligner que la correction doit être utilisée
lorsque θN est la cible et que nous devons utiliser une variance
conditionnelle étant donné Y , en traitant les données Y et θN comme
étant fixes

• Le fait que N soit fini est sans importance
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Autres sujets abordés dans l’article

• Variables auxiliaires

• Variance de l’estimateur de régression tenant compte de l’estimation
du paramètre de régression

• Échantillonnage informatif de Poisson
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