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Basics on linear models 
 

 

 

 

 

 

 

 

 

 

 

 

1.1 Introduction 

Linear models form one of the most widely used tools of statistics both from a 

theoretical and practical points of view. They encompass regression and analysis 

of variance and covariance, and presenting them within a unique theoretical 

framework helps to clarify the basic concepts and assumptions underlying all 

these techniques and the ones that will be used later on for mixed models.  

There is a large amount of highly documented literature especially textbooks in 

this area from both theoretical (Searle, 1971, 1987; Rao, 1973; Rao et al., 2007) 

and practical points of view (Littell et al., 2002). Therefore our purpose here is 

limited to reviewing the main results in statistical theory concerning such 

models. The first chapter reviews the general formulation of linear models and 

the main procedures used for estimating parameters and testing hypotheses, first 

on the premise that data are independent and in a second step that they are 

correlated. This enables us to formally introduce the concept of linear mixed 

models. Two ways are presented to that respect either by structuring the residual 

components of the model or by building the model hierarchically according to 

several steps of sampling. Finally, we discuss the issue of the distinction 
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between fixed and random effects both from classical and Bayesian points of 

view. 

1.2 Formulation of the linear model 

Classically, a linear model is written as 

 y Xβ e= +  (1.1) 

where ( )1
,..., '

N
y yy =  is an N-dimensional vector of dependent random variables 

corresponding to responses, ( )1,..., ,...,
k p

X X X X=  is a( )xN p known matrix of 

explanatory variables with p N≤ , ( )1,..., ,..., '
k p

β = β β β  is a ( )x1p  vector of 

real-valued parameters pertaining to each 
k

X  variable, and ( )1
,..., '

N
e ee =  is an 

N-dimensional vector of residuals representing the deviations of the data y  from 

the explained part Xβ .  

The variables 1,..., ,...,k pX X X  forming the columns of X  can be either i) 

continuous such as predictor variables in regression models, or ii) discrete (often 

coded as 0 and 1) corresponding to levels of factors in analysis of variance 

(ANOVA) models. In this second case, X  is called a design or an incidence 

matrix.  

The corresponding elements 1,..., ,...,k pβ β β  of β  represent in case i) regression 

coefficients, and in case ii) what is called “fixed effects”.  

Letting ( )Eµ y= and ( )VarV y= , different assumptions can be made regarding 

the general model defined in (1.1), that is : 

 a) µ Xβ=  stating that the model is correctly specified regarding its 

systematic (expectation) part; 

 b) ( )ii
Diag VV = , 1,...,i N=  corresponding to independent, or at 

least uncorrelated, data ; 

 c) 
2

N
V I= σ  standing for b) and residuals with homogeneous 

variances 2σ  ; 
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 d) ( )~ ,y Xβ VN  stating that vector y  follows a multivariate 

normal (Gaussian) distribution with expectation Xβ  and variance covariance 

matrix V  possibly described as in b) or c).  

As it will be shown later on in more detail, it is not necessary to make all these 

assumptions simultaneously, some procedures are very constraintful such as 

maximum likelihood (ML) estimation or hypothesis testing, while others such as 

Ordinary Least Squares (OLS) only need a).  

Finally, it is important to recall that linearity must be understood with respect to 

the parameters β , more precisely such that the partial derivatives '/ 'µ β X∂ ∂ =  of 

µ  with respect to β  does not depend on β . Obviously, this does not preclude 

incorporating non linear functions of some covariates (e.g. time) in the X  

matrix.  

1.3 Estimation 

1.3.1 Ordinary Least Squares (OLS) 

A very simple way of estimating the unknown vector of parameters β  is by the 

method called “Least Squares”. This method was described by Adrien-Marie 

Legendre in 1805 for solving overdetermined linear systems of equations in 

astronomy and geodesy. It was derived on probability grounds by Carl 

Friederich Gauss in 1809-1823 and by Pierre Simon de Laplace in 1810: see eg 

Stiegler (1986) about historical aspects of their contributions to this procedure. 

Let 
2

( )S β y Xβ= −  designate the Euclidian square distance between the data y  

and µ  considered as a function of β . The OLS estimation β̂  of β  results from 

minimizing ( )S β  with respect to β  

 ˆ arg min ( )S
β

β β=  (1.2) 

For this, it can be easily seen that the first and second derivatives can be 

expressed as : 

 ( )( ) / 2 'S β β X y Xβ∂ ∂ = − −  
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2 ( ) / ' 2 'S β β β X X∂ ∂ ∂ =  

The condition of convexity being satisfied ( 'X X  being definite positive), the 

minimum of ( )S β  is obtained by setting the first derivative to zero which gives 

 ˆ' 'X Xβ X y=  (1.3) 

which is known as the system of OLS or normal equations.  

Two situations must be distinguished according to whether 'X X  has full rank p  

or not. Now ( ' ) ( )rank rankX X X= . We ask the reader to verify this (see 

exercise 1.1). Thus, the condition reduces to know whether X  is of full column 

rank (i.e. ( )p rank X= ) or not. In other words, are the columns of X  linearly 

independent (LIN) or not?  

If so, 'X X  is invertible and the system in (1.3) has a unique solution 

 ( )
1ˆ ' 'β X X X y

−
=  (1.4) 

This is for instance what happens in linear regression based on continuous real-

valued variables provided that none of them is a linear combination of the 

others.  

Example 1.1 Linear regression 

Let us consider the simple regression model for the response (dependent) 

variable 
i

y  as a function of a single (independent) covariate 
i

x  measured on a 

sample of experimental units( 1,...,i N= ) 

 
0 1i i i

y x e= + +β β .  (1.5) 

Here  
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1 .

1

1 .

1

i

N
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x

x

X
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 
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 ( )
2

1 1 1

1

' /

N N

i ii i

N

ii

x x
D

x N
X X

− = =

=

 −
 =
 − 

∑ ∑

∑
 

with ( )
2

2

1 1

N N

i ii i
D N x x

= =
= −∑ ∑ . 

Hence, applying (1.4) gives immediately 

 
( )( )

( )
1 1 1

1 2
2

1 1

/
ˆ

/

N N N

i i i ii i i

N N

i ii i

x y x y N

x x N

= = =

= =

−
=

−

∑ ∑ ∑

∑ ∑
β , (1.6) 

 ( )0 11 1

ˆ ˆ /
N N

i ii i
y x N

= =

 = −  ∑ ∑β β .  (1.7) 

If X  is not full column rank as in ANOVA, there are several ways for solving 

(1.3). The first one consists of setting an equivalent model with an incidence 

matrix whose columns are LIN. 

1.3.1.1 Reparameterisation to full rank 

This technique can be illustrated in the following example.  

Example 1.2 One-way ANOVA classification 

Let us consider the following data set from a one-way classification trial 

Table 1.1. A one-way layout 

A 

Level 1 Level 2 

6, 6, 8 4, 12 

 

and the corresponding ANOVA model 

  ,  1,..., , 1,...,i i ij iy e i I j n= + + = =µ α  (1.8) 

Here 2I = , 
1 3n =  and 

1 2n =  
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11 12 13 21 22' ( , , , , ) ' (6,6,8,4,12)y y y y yy = =  

and, 

 
1

2

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

Xβ

 
 

  
  =       

  

µ

α

α

 

Letting ( )0 1 2
, ,X X X X= , the model can be written as 

 
0 1 1 2 2( )E y X X X= + +µ α α .  

But we have the following relationship among the columns: 
0 1 2X X X= +  so 

that the model can be rewritten as ( )0 1 1 2 0 1
( )E y X X X X= + + −µ α α that is 

 ( ) ( )2 0 1 2 1
( )E y X X= + + −µ α α α   (1.9) 

If we define ( )*

0 1,X X X= , ( )* * *, 'β = µ α  with 
*

2
= +µ µ α  and 

*

2 1
= −α α α , 

the model becomes 
* *( )E y X β=  with *X  now being full column rank. It 

involves the first two columns of the original X  matrix and parameters 

pertaining to the effect 
*

2
= +µ µ α  of the last level of the A classification and 

the difference 
*

2 1
= −α α α  between the first and last level effects.  

More generally, starting from ( )E y Xβ=  with incidence matrix ( )Nxp
X  and ( )1px

β

and ( )
X

r rank X=  being smaller than p , we introduce an alternative equivalent 

model 
* *( )E y X β=  where the( )x

X
N r *X  matrix being full column rank and 

*β  

is a linear transformation 
*β Tβ=  of full row rank of the initial parameters β . 

The question is then: given T , how can we derive *X  ? By identifying the two 

models, we immediately obtain  

 ( )
1* ' 'X XT TT

−
=   (1.10) 

We leave up to the reader to prove this result and check it on example (1.2) (see 

exercise 1.2) 
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The technique described in the example corresponds to what is called “reference 

population (or category) coding” which is used in some packages. An alternative 

would have been to define 
*µ  as 

*

1 2
½( )= + +µ µ α α  and ( )*

1 2½= −α α α , 

technique that is sometimes called “deviation from the mean model”.  

Notice also that this reparemeterization is based on a variable transformation 

implying a reduction in the dimension of the parameter space from p  to 
X

r p< , 

and thus should be distinguished from other procedures keeping this dimension 

unchanged but adding constraints on the parameters (Searle, 1971).  

1.3.1.2 Linear constraints on solutions 

For instance, in model (1.8), ( )
i i

E y = +µ α , setting constraints on the OLS 

solutions of the form 
1

ˆ 0
I

ii=
=∑ α , or ˆ 0

I
=α  allows to get unique solutions to the 

linear system ˆ' 'X Xβ X y= .  

Actually, we need to impose 
X

m p r= −  linear constraints on the elements of β̂  

which can be expressed as ˆ'L β 0=  with 'L  being an ( )xm p  full row rank 

matrix whose rows are LIN of those of X . Now, we have to mininimize 

( ) ( )( ) 'S β y Xβ y Xβ= − −  subject to 'L β 0= . Using a Lagrange multiplier 

( )x1m  vector 2λ , this reduces to minimizing  

 ( ) ( )*( ) ' 2 ' 'S β y Xβ y Xβ λ L β= − − + . (1.11) 

By differenciation with respect to β  and λ , one has 

 ( )*( ) / 2 ' 2S β β X y Xβ Lλ∂ ∂ = − − +  

 
*( ) / 2 'S β λ L β∂ ∂ =  

Setting these derivatives to zero results in the following system of equations : 

 
ˆ' '

'

X X L X yβ

L 0 0λ

    
=    

    
. (1.12) 

Some authors (Searle, 1987, page 376) also consider restrictions on parameters. 

Whereas restriction on parameters imply constraints on the solutions and give 
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the same system of equations (1.12), the opposite is not true. In particular, 

making this distinction may matter as far as estimability of parameters is 

concerned as shown in the next section. Some parameters which are not 

estimable in the original model, can be estimable in the restricted one. For 

instance, µ  is not estimable in model (1.8), but becomes such in under the 

restricted model 
1

0
I

ii=
=∑ α .  

1.3.1.3 Generalized inverses and estimable functions 

When X  is not full column rank, the OLS system ˆ' 'X Xβ X y=  has many 

solutions, in fact, an infinite number of solutions which can be obtained using 

generalized inverses of 'X X , denoted by ( )'X X
−
 

 ( )ˆ ' 'β X X X y
−

= . (1.13) 

Definition 1.1 If G  stands for ( )'X X
−
, a g-inverse of 'X X  is any matrix 

satisfying ' ' 'X XGX X X X= .  

Since there are many solutions generated by g-inverses of 'X X , a natural idea is 

to restrict solutions to those which are invariant to the choice of g-inverses. For 

this, an interesting class of such functions reposes on the so-called “estimable 

functions”. The basic idea underlying this concept is as follows. As the key 

parameter of linear models are the expectations Xβ  of data (e.g the cell mean 

ijµ  in a two-way classification model), only linear functions of Xβ  have to be 

considered in the estimation process of β .  

Definition 1.2 In that context, a linear function 'k β  is an estimable function, if 

and only if (iff in short), it can be expressed as a linear combination of the 

expectations of the observations. 

 'k β  estimable iff t∃ , ' ' ,  k β t Xβ β= ∀  (1.14) 

Now, using any g-inverse of 'X X , the OLS estimation ˆ'k β  of 'k β can be 

calculated from  
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 ( )ˆ' ' ' 'k β k X X X y
−

=  (1.15) 

Since 'k β  is an estimable function, ' 'k t X=  and ˆ ˆ' 'k β t Xβ= .  

Letting 

 ( )' 'P X X X X
−

=  (1.16) 

Substituting ( )' 'X X X y
−

 to β̂  in ˆ'k β  and using (1.16), ˆ'k β can be expressed as 

 ˆ' 'k β t Py=  (1.17) 

The P  (also denoted H  in some textbooks) plays a major role in linear model 

theory owing its geometric interpretation ( P  is a projector as shown later on) 

and its properties, the main ones being (see appendix): 

 PX X=  (1.18) 

 P  invariant to ( )'X X
−
 (1.19) 

 
2P P=  (1.20) 

Knowing (1.17), property (1.19) proves that ˆ'k β  is also invariant to ( )'X X
−

.  

Formulae (1.13) and (1.15) rely on choosing g-inverses G  of 'X X , and a 

natural question immediately arises on how to calculate such G ’s ? 

Without entering into technicalities which are beyond our purpose, here are 

three different ways on how to obtain such matrices in the particular case of 

'X X .  

The first approach consists in partitioning columns of X  into two sets( )1 2
,X X  

such that 
1X , an ( )x

X
N r  matrix is full column rank with ( )

X
r rank X= and 

columns of 
2X  are linear combinations of those of 

1X , that is 
2X  can be written 

as 
2X =

1X T  for some known T . Hence, ( )
1

'

1 1X X
−

 exists and G  can be 

computed as 

 
( )

1
'

1 1

1

X X 0
G

0 0

− 
 =
  

 (1.21) 
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A second approach begins by constructing the same matrix as the coefficient 

matrix of (1.13) with L  being an ( )xm p  full row rank matrix such that 

m p r
x

= − , and computing its regular inverse 

 

1 11 12

1

21 22

'

'

X X L M M
M

L 0 M M

−

−   
= =   
   

. (1.22) 

Then, it can be shown (Searle, 1971, pages 21-23) that  

 
11

2
G M= , (1.23) 

and 

 ( )
1

3 ' 'G X X LL
−

= + . (1.24) 

are both g-inverses of 'X X  . In fact, 
2G  is a symmetric reflexive g-inverse (i.e. 

verifying AGA A=  and GAG G= ) whereas 
3G  is not (see exercise 1.6) 

1.3.2 Statistical properties 

Under the assumption that ( )E y Xβ=  (i.e that the model is correctly specified 

for its expectation), the OLS estimator of an estimable function is unbiased 

 ( )ˆ' 'E k β k β= . (1.25) 

The proof of (1.25) is very easy and worth mentioning. 'k β  being an estimable 

function, we know that its OLS estimator can be expressed as ˆ' 'k β t Py= so that , 

( )ˆ' 'E k β t PXβ=  but, from to (1.18), one has ' ' 't PXβ t Xβ k β= =  (QED).  

It is important to point out that this proof only relies on the assumption that 

( )E y Xβ= , and does not involve any statement about the variance covariance 

structure V  of the residuals. In addition, since ( ) ( )ˆ' ' ' 'E k β k X X X Xβ
−

= , this 

unbiasedness property provides a simple device for testing estimability of 'k β  

by checking the following relationship: 

 ( )' ' ' 'k k X X X X
−

= , (1.26) 

for any g-inverse of 'X X .  
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Moreover, under the additional assumption that 
2

N
V I= σ  (independence and 

homoscedasticity of residuals), the OLS estimator of 'k β  is also the best linear 

unbiased estimator (BLUE) of 'k β , that is the one with the smallest sampling 

variance in the class of all linear unbiased estimators of 'k β  (exercise 1.4) 

 ( ) ˆ' 'BLUE k β k β= , (1.27) 

with 

 ( ) ( )2ˆ' ' 'Var k β k X X k
−

= σ . (1.28) 

Again, this last expression comes from writing ˆ' 'k β t Py=  so that 

( ) 2 2ˆ' 'Var k β t P t= σ . Now, given that P  is idempotent, and replacing it by its 

expression (1.16), one has ( ) ( )2ˆ' ' ' 'Var k β t X X X X t
−

= σ . Then, noting that 

' 't X k=  leads to (1.28). We have seen that ˆ'k β  is a linear, unbiased estimator 

of 'k β . We leave up to the reader (exercise) to show that its variance 

( )2 ' 'k X X k
−

σ  is the smallest possible one.  

Finally, assuming that ( )2~ ,
N

y Xβ IσN , the OLS estimator of 'k β  is also 

normal with expectation and variance given in (1.25) and (1.28) respectively 

 ( )( )2ˆ' ~ ' , ' 'k β k β k X X k
−

σN . (1.29) 

The results in (1.28) and (1.29) are based on the premise that 2σ  is known. 

Otherwise, it must be estimated. A simple way to do it, is to refer to the residual 

sum of squares, denoted classically by SSE 

 
2

ˆSSE y Xβ= − . (1.30) 

Given ˆê y Xβ= −  or alternatively ( )ê I P y= − , SSE can be viewed as a 

quadratic form ( )'SSE y I P y= −  knowing that ( )I P− is idempotent.  
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This means that it can be easily computed as ' 'SSE y y y Py= − . But, remember, 

the data vector can be decomposed as 

 ( )ˆ ˆy Xβ e Py I P y= + = + −  (1.31) 

so that the last term ˆ' ' 'y Py β X y=  and  

 ˆ' ' 'SSE y y β X y= − . (1.32) 

The last term made of the product of the OLS solution β̂  by the right hand side 

of the normal equations 'X y  represents the part of variation of y  accounted for 

by the model ( )E y Xβ= . It is often denoted as ( )R β  or SSR for « reduction in 

sums of squares ». Conversely, the total variation in y  can be partitioned into 

two components, one ( )R β  explained by the fitted model, and one due to the 

unexplained or residual part, SSE  

 ( )' R SSEy y β= +  

which is the basic principle of the ANOVA procedure.  

Since SSE  is a quadratic form, its expectation can be easily obtained using the 

classical result 

 ( )( ' ) 'E try Qy µ Qµ QV= + . (1.33) 

Here, Q I P= − , µ Xβ= , 
2

N
V I= σ  and ( ) X

tr N rI P− = − . The first term 

( )' 'β X I P Xβ−  cancels out because PX X= , and ( )E SSE  reduces to  

 ( )2( )
X

E SSE N r= −σ   

Therefore, we get an unbiased estimator of 2σ  as 

 
( )2 '

ˆ
X

R

N r

y y β−
=

−
σ . (1.34) 

Furthermore, under the assumption of normality of y , this estimator has a 

distribution proportional to a chi-square, namely 

 
2

2 2ˆ ~
XN r

XN r
−

−

σ
σ χ . (1.35) 
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The proof of (1.35) is a direct application of the following theorem 

Theorem 1.1: If ( )~ ,y µ VN , then the quadratic 'y Qy  has a non central chi-

square distribution with degrees of freedom ( )rank QV=ν and non centrality 

parameter ½ 'µ Qµ=λ . 

As seen previously in deriving (1.34), here ( ) 2/Q I P= − σ ,µ Xβ= , 
2

N
V I= σ  

and ( ) X
tr N rI P− = −  so that 

X
N r= −ν , 0=λ  and 2 2/ ~

XN r
SSE −σ χ  (QED).  

Another possibility under the normality assumption of data ( )2~ ,
N

y Xβ IσN  

would be to recourse to maximum likelihood (ML) estimation of both β  and 
2σ .  

In that case, letting ( )2; ,f y β σ  designate the density of y , the log-likelihood 

( ) ( )2 2, ; log ; ,L fβ y y β=σ σ  considered as a function of the parameters is 

( ) ( ) ( )2 2 2, ; ½ (log2 log ) ½ ' /L Nβ y y Xβ y Xβ= − + − − −σ π σ σ (1.36) 

Letting ( )22 , ;D L β y= − σ , differentiation with respect to β  and 2σ  yields 

 ( ) 2/ 2 ' /D β X y Xβ∂ ∂ = − − σ , 

 ( ) ( )2 4/ / ' /D Nβ y Xβ y Xβ∂ ∂ = − − −σ σ , 

and setting them to zero, leads to 

 ˆ' 'X Xβ X y= , (1.37) 

 ( ) ( )2 ˆ ˆˆ ' /ML Ny Xβ y Xβ= − −σ . (1.38) 

The system in β̂  is exactly the same as the OLS normal equations whereas the 

estimation of 2σ  differs from the moment estimation in (1.34) with N  instead 

of 
X

N r−  in the denominator making the ML estimator biased downwards.  

Example 1.3 (Continuation of example 1.2) 

We can apply LS theory to the one-way classification data of example 1.2. 

For  1i = , the data are 
11 6y = , 

12 6y = , 
13 8y =  and for  2i = , 

21 4y = , 
22 12y =  

so that ' (6,6,8,4,12)y = .  
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The data are fitted to the following model:  ,  1,2i i ijy e i= + + =µ α .  

Thus, the normal equations ˆ' 'X Xβ X y=  are: 

 1

2

ˆ5 3 2 36

3 3 0 20

ˆ2 0 2 16

     
     =     
          

µ

α

α

. 

Reparameterization in 
*

2
= +µ µ α  and 

*

1 2
= −α α α  gives the following system 

 
*

*

5 3 36ˆ

3 3 ˆ 20

    
=    

    

µ

α
, 

with solutions 
*ˆ 8=µ  and *ˆ 4 / 3= −α . 

When setting the constraint 
2

ˆ 0=α  i.e ( )' 0 0 1L =  with a Lagrange 

multiplier λ , the system becomes 

 
1

2

ˆ5 3 2 0 36

ˆ3 3 0 0 20

ˆ2 0 2 1 16

0 0 1 0 0

     
     
     =
     
     
     

µ

α

α

λ

 

which gives ˆ 8=µ , 
1

ˆ 4 / 3= −α , 
2

ˆ 0=α  and 0=λ . 

Notice that the inverse of the coefficient matrix provides exactly the g-inverse 

2G  defined in (1.23) 

 2

1 / 2 1 / 2 0

1 / 2 5 / 6 0

0 0 0

G

− 
 = − 
  

. 

This matrix verifies both 
2AG A A=  and 

2 2 2G AG G=  where A  is the 

coefficient matrix 'X X  of the first system. We can also check that the 

estimability condition 
2' ' 'K K G X X=  for 

2+µ α  and 
2 1−α α  holds using 'X X , 

2G  and 
1 0 1

'
0 1 1

K
 

=  − 
.  

We can also form ' 'X X LL+  which is 
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5 3 2

' ' 3 3 0

2 0 3

X X LL

 
 + =  
  

 

and take its regular inverse ( )
1

3 ' 'G X X LL
−

= +  

 3

3 / 2 3 / 2 1

3 / 2 11 / 6 1

1 1 1

G

− − 
 = − 
 − 

. 

As mentioned in (1.24), 
3G  is a g-inverse of 'A X X=  that verifies 

3AG A A=  

but not 
3 3 3G AG G= . However, both 

2G  and 
3G  provide the same solution to 

ˆ' 'X Xβ X y=  which is ( )ˆ ' 22 2 2 / 3β = − . 

Whatever the technique used, the estimable functions have the same values 

*ˆ 8=µ  and *ˆ 4 / 3= −α . The reduction in sums of squares ( )R β  and SSE  remain 

invariant and equal to ( ) 784 / 3R β =  and 296 784 / 3 104 / 3SSE = − =  giving 

2ˆ / 3 104 / 9SSE= =σ .  

1.4 Hypothesis testing 

1.4.1 General results 

A convenient formulation for testing a linear hypothesis about β  consists in 

writing  

 
0 : 'H C β 0=  vs 1 0 : 'H H C β 0= ≠ , (1.39) 

where 'C  is a full row rank ( )x
C

r p known matrix of coefficients such that 

1
C X

r r≤ ≤  and 'C β  represent 
C

r  estimable functions.  

Usual test statistics about (1.30) require the normality asumption 

( )2~ ,
N

y Xβ IσN . Then according to (1.29) we know that 

 ( )2ˆ' ' ~ 0, ' 'C β C β C X X C
− −

 
σN . (1.40) 

Moreover, if ( ) ( )1
~ ,

nx
z 0 ΣN , then 

1 2' ~
n

z Σ z− χ  ; this is in fact a corollary of 

theorem 1.1. Applying this result to (1.40) under
0 : 'H C β 0=  gives 
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 ( )
1

2 2ˆ ˆ' ' ' ' / ~
cr

W β C C X X C C β
−− =

 
σ χ . (1.41) 

However, we cannot take advantage directly of this property since W  entails the 

unknown parameter 2σ  in the denominator. Letting 
2Q W= σ , this difficulty is 

overcomed by observing that Q  and SSE  are both proportional to chi-squares 

but with the same proportionality constant  

 2 2~
Cr

Q σ χ .  (1.42) 

 2 2~
XN r

SSE −σ χ  (1.43) 

In addition, Q  and SSE  are statistically independent. This property results 

directly from the following theorem (see exercise)  

Theorem 1.2. Let ( )~ ,y µ VN , the quadratic forms 'y Ay  and 'y By  are 

independently distributed if and only if AVB 0= , or BVA 0= . 

Here, for ( )'G X X
−

= , A I P= −  and ( )
1

' ' 'B XGC CGC C GX
−

= , 2
V I= σ  . 

Since ( )I P X 0− = , then AVB 0=  (QED).  

We can now construct the ratio of two independent chi-square variables divided 

by their respective degrees of freedom. Let  

 
( )

2

2

/

/

C

X

Q r
F

SSE N r
=

−

σ

σ
 

Doing so, 2σ  cancels out and F  becomes a computable statistic which can be 

alternatively expressed as 

 
( )
/

/

C

X

Q r
F

SSE N r
=

−
, (1.44) 

or  

 
2ˆ

C

Q
F

r
=

σ
, (1.45) 

where 2σ̂  is the unbiased moment estimator given in (1.34).  
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Under the null hypothesis, this quantity has a Fisher-Snedecor distribution with 

C
r  and 

X
N r−  degrees of freedom.  

 ( )0 ,
~

C X
H r N r

F
−

F  (1.46) 

and thus provides a statistic for testing
0H  versus 

1H . 

The case 1
C

r =  deserves special attention. It reduces to implementing a t-test 

since a Fisher-Snedecor distribution with 1 and n  degrees of freedom is 

equivalent to the square of a Student’s-t distribution with n  degrees of freedom. 

Therefore, testing 
0 : 'H c β 0=  vs 1 0 : 'H H c β 0= ≠  can be carried out via 

 

( )
1

ˆ'
~

ˆ ' '
XN rT

c β

c X X c

−−
− 

 
σ

. (1.47) 

The corresponding ( )100 1 %−α  confidence interval of ˆ'c β  is obtained as 

 ( ), /2
ˆ' ±

XN r
t SEc β

− α , (1.48) 

where ( ), /2XN r
t

− α
 is the 1 / 2−α  quantile of 

XN rT −  and ( )ˆ ' 'SE c X X c
−

= σ  is the 

standard-error of ˆ'c β . 

1.4.2 Alternative computations of Q  

Following (1.41) and (1.42), the quantity Q  entering the numerator of the F-

statistic can be calculated directly as 

 ( )
1

ˆ ˆ' ' ' 'Q β C C X X C C β
−− =

 
. (1.49) 

But, there are some shortcut procedures allowing both to simplify the 

computations and also to interpret Q  in terms of a difference between the 

reduction in sums of squares due to fitting two different models, a complete and 

a reduced one. 

Let us consider the linear model y Xβ e= +  with the following partitions of 

( )1 2
,X X X=  and of ( )' '

1 2' ,β β β= and assume that we wish to test the null 
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hypothesis 
0 2:H β 0=  against its contrary alternative. To this respect, we can 

apply the general procedure presented in (1.39) and (1.40) with ( )
1 2

' ,
p p

C 0 I= , 

2X  being full column rank by construction of 
0H .  

Then ( )
1

2

2 2 2
ˆ ˆ ˆQ Var

'
β β β

−
−  =

 
σ  where 2β̂  is the solution to the OLS system 

 
11 1 1 2 1

2 1 2 2 22

ˆ

ˆ

' ' '

' ' '

βX X X X X y

X X X X X yβ

    
=    

     
. (1.50) 

After eliminating the equations for 1β̂ , this system reduces to 

 ( ) ( )
1 12 2 2 2

ˆ
X X

' '
X I P X β X I P y− = − , (1.51) 

where 
1XP  is the projector defined as ( )

1 1 1 1 1X

' '
P X X X X

−

= . 

Expliciting 2β̂  and ( )2
ˆVar β  from (1.51) and inserting these expressions in that 

of Q , one obtains 

 ( )
12 2

ˆ
X

Q
' '
β X I P y= −  (1.52) 

which appears as the product of the solution of the system (1.51) by its right-

hand side. 

In addition, the reduction ( )1 2
,R β β due to fitting the complete (or full) model is 

by definition 

 ( )1 2 1 1 2 2
ˆ ˆ,R

' ' ' '
β β β X y β X y= +  

with, from (1.50), 1β̂  satisfying 1 1 1 1 2 2 1
ˆ ˆ' ' '

X X β X X β X y+ =  or, alternatively, 

 ( ) ( )1 1 1 1 2 2
ˆ ˆ' 'β X X X y X β

−

= − . 

Substituting that expression into that of ( )1 2
,R β β , gives 

 ( ) ( ) ( )1 2 2 2 2 2 1 1 1 1
ˆ ˆ, 'R ' ' ' 'β β β X y y X β X X X X y

−

= + −  

and, after rearranging, 
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 ( ) ( ) ( )
11 2 2 2 1 1 1 1

ˆ, 'XR
' ' ' '

β β β X I P y y X X X X y
−

= − + . 

In other words, ( ) ( )1 2 1
,R Q Rβ β β= + . This means that Q , also denoted as 

( )2 1
|R β β , can be expressed as the difference between the reductions due to 

fitting the full model and the reduced model 
1 1y X β e= +  

 ( ) ( ) ( )2 1 1 2 1
| ,R R Rβ β β β β= − . (1.53) 

We have seen previously that Q  can be written as a quadratic form in 2β̂ , that is 

 ( ) ( )
12 1 2 2 2 2

ˆ ˆ|
X

R
' '

β β β X I P X β = −  . 

Assuming in addition that 
1X  is also full column rank, let  

 

1

11 12 1 1 1 2

21 22 2 1 2 2

' '

' '

C C X X X X

C C X X X X

−
  

=   
   

. (1.54) 

Classical results on inverses of partitioned matrices give 

 
1

22
C− = ( )

12 2X

'
X I P X− , 

so that 

 ( ) 1

2 1 2 22 2
ˆ ˆ|R

'
β β β C β

−= . (1.55) 

This expression is known as “the inverse part of the inverse” (Searle, 1971, page 

115; Harvey, 1975, page 7; Searle, 1987, page 268). It may also be applied to 

the non full rank case provided 
22C  in (1.54) is taken as a symmetric reflexive g-

inverse of ( )
12 2X

'
X I P X− . Then, ( )2 1 2 22 2

ˆ ˆ|R
'

β β β C β
−= .  

Finally, we end up with two ways of computing Q  when testing 
0 2:H β 0=  

either directly as 1

2 22 2
ˆ ˆ'
β C β

− , or indirectly, from the difference ( ) ( )1 2 1
,R Rβ β β− .  

This last procedure known after Yates (1934) as the method of fitting constants 

has played a role in analysis of variance for unbalanced data both for fixed (as 

here) or mixed (Henderson, 1953) mixed models. It also has the advantage of 

being very general since it can be extended to any linear testing hypothesis such 

as 
0 : 'H C β m=  where m  is a ( )x1

C
r known vector, not necessarily nil.  
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Let 0β̂  the estimation of β  under the null hypothesis and β̂  under the 

alternative, 0β̂  can be calculated from the following system 

 0
ˆ' '

'

X X C X yβ

C 0 mλ

    
=    

    
, (1.56) 

and β̂  from ˆ' 'X Xβ X y= .  

Then Q  can be simply expressed as 

 0
ˆ ˆ' ' ' 'Q

'
β X y β X y λ m= − − , (1.57) 

which is equivalent to 

 ( ) ( )Q SSE Restricted SSE Full= − , (1.58) 

with 

 ( )'

0
ˆ( ) ' ' 'SSE Restricted y y β X y λ m= − + , (1.59) 

 ˆ( ) ' ' 'SSE Full y y β X y= − . (1.60) 

We leave up to the reader (see exercise 1.7) to show that the expression of SSE  

under the restricted model is (1.59).  

Example 1.4 Two way crossclassified model 

Let us consider they following two-way cross-classified layout involving gains 

of barrows sired by 3 different boars and assigned to two feeding regimes 

(Harvey, 1975, page 42) as shown in table 1.2 

Table 1.2: Data set for the 2 way crossclassified design 

Cell Regime Sire Number Observations 

1 1 1 2 5,6 

2 1 2 5 2,3,5,6,7 

3 1 3 1 3 

4 2 1 2 2,3 

5 2 2 3 8,8,9 

6 2 3 5 4,4,6,6,7 
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We suggest analyzing this data set by a two factor linear model with interaction 

 ijk i j ij ijky e= + + + +µ α β γ , (1.61) 

where µ  is a mean parameter, 
i

α  is the effect due to the ith level of factor A 

(here regime, 1,2i = ), jβ  is the effect due to the jth level of factor B (here sire, 

1,2,3j = ), ijγ  is the interaction effect pertaining to the ijth subclass, and ijke  is 

the residual for the kth observation 1,..., ijk n=  assumed i.i.d. ( )20,σN . 

Letting ( )ij ij
E y=µ , we can reparameterize this model so as to make it full rank 

with  

 
*

23
=µ µ ,  

 
*

1 13 23
= −α µ µ ,  

 
*

1 21 23
= −β µ µ , 

*

2 22 23
= −β µ µ ,  

 ( ) ( )*

11 11 21 13 23= − − −γ µ µ µ µ  

 ( ) ( )*

12 12 22 13 23= − − −γ µ µ µ µ . 

Given that the levels of reference are the last ones i.e. 2 for A and 3 for B, this 

reparemeterization provides “natural” measures of the main and interaction 

effects. This is especially true for the interaction effects. Remember that an 

interaction between two factors (here A and B) ensues from the fact that the 

effects of the levels of A depends on the modalities of B. For instance, 
*

11
γ , the 

interaction between level 1 of A and level 1 of B, measures the extent to which 

the difference between rows 1 and 2 (as reference) varies from column 1 to 

colum 3 (as reference).  

Letting ( )ijk
yy =  and ( )ijk

ee =  be the vectors of data and residuals respectively, 

then, the model can be written in matrix notations as 

 
* * * * * * *

N A B C
y 1 X α X β X γ e= + + + +µ , (1.62) 
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where ( )* *

1α = α , ( )* * *

1 2, 'β = β β , ( )* * *

11 12, 'γ = γ γ ; 
N

1  is an ( )x1N vector of 1’s and 

( )ijk
ee = . 

*

A
X , 

*

B
X , 

*

C
X  are incidence matrices shown below: 

( )* 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 '
A

X =  

*
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

'
0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0

BX
 

=  
 

 

*
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

'
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

CX
 

=  
 

 

Notice that in this parameterization 
*

A
X  (

*

B
X  respectively) results from dropping 

the column pertaining to the last level from the full incidence matrice of factor A 

(B respectively). In addition, the 2 columns of 
*

C
X  are simply obtained as the 

product of the single column of 
*

A
X  by the two columns of 

*

B
X  respectively.  

Let ( )* * * *, , ,
N A B C

X 1 X X X=  and ( )* * *' *' *'ˆ , , , 'b α β γ= µ , the system of OLS 

equations becomes after reparameterization: 

 *' * * *'ˆX X b X y=  (1.63) 

that is 

 

*

*

1

*

1

*

2

*

11

*

12

ˆ18 8 4 8 2 5 94

ˆ8 8 2 5 2 5 37

ˆ4 2 4 0 2 0 16

ˆ8 5 0 8 0 5 48

2 2 2 0 2 0 11ˆ

5 5 0 5 0 5 23ˆ

c

c

    
    
    
    
  =   
    
    
    
     

µ

α

β

β
 

This system being full rank, has unique solutions that are 
*ˆ 5.4=µ , 

*

1
ˆ 2.4= −α , 

*

1
ˆ 2.9= −β , * 14

152
ˆ 2=β , 

*

11
ˆ 5.4c =  and 

* 1
312

ˆ 1c = − .  

Now using this solution and the right hand side, we can compute the R  term for 

the full model  

 ( ) ( )* * *' 14
15

ˆ, , , 541R R b b X y= = =µ α β γ .  (1.64) 
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An alternative would have been to calculate it from its ANOVA expression in 

terms of a sum of squares 

 ( ) 0

2

1 1
, , , /

I J

ij iji j
R y n

= =
=∑ ∑µ α β γ  

where 
0 1

ijn

ij ijkk
y y

=
=∑ . Here, this gives 

 ( )
2 2 2 2 2 2

14
15

11 23 3 5 25 27
, , , 541

2 5 1 2 3 5
R = + + + + + =µ α β γ . 

Let ( )# # #, ,
N A B

X 1 X X=  and ( )# # # # #

1 1 2, , , 'b = µ α β β , similar computations can be 

carried out for the additive model ( ) # #
E y X b=  where 

# *

A A
X X=  and 

# *

B B
X X=  as 

previously, and 
#

2 3
= + +µ µ α β , 

#

1 1 2
= −α α α , 

#

1 1 3
= −β β β , 

#

2 2 3
= −β β β .  

The normal equations #' # # #'ˆX X b X y=  are formed by dropping the last two rows 

and two columns of the previous system, that is 

 

#

#

1

#

1

#

2

ˆ18 8 4 8 94

ˆ8 8 2 5 37

ˆ4 2 4 0 16

ˆ8 5 0 8 48

    
    
    =    
    
     

µ

α

β

β

. 

They have solutions 
#ˆ 5.2696=µ , 

*

1
ˆ 1.6180= −α , *

1
ˆ 0.4607= −β , *

2
ˆ 1.7416=β . 

This leads to the reduction ( ) ( )# #' #'ˆ, , 511.7079R R b b X y= = =µ α β . 

If we want to test the null hypothesis:
*

0
:H c 0=  that there is no interaction 

between factors A and B, we construct the statistic 

 
( )

/

/

C C
C

X

Q r
F

SSE N r
=

−
 

where ( )| , ,
C

Q R= γ µ α β , ( )' , , ,SSE Ry y= − µ α β γ , ( )* 2
AB C

r rank X= = , 

18N = , and 6
X

r =   

C
Q  can be computed by contrasting the reduction due gto fitting the full model 

including the interaction with that of the additive model 
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 ( ) ( ), , , , ,
C

Q R R= −µ α β γ µ α β  

which gives 541.9333 510.7079 30.2254
C

Q = − = . 

Inverting the coefficient matrix of the full model and extracting the block 

pertaining to interactions leads to 

 22

2.2 1.2

1.2 1.7333
C

 
=  
 

 

Letting ( )* * *

2 11 12
ˆ ˆ ˆ, 'c cb = , that is here ( )*

2
ˆ 5.4, 4 / 3 'b = −  and computing *' 1 *

2 22 2
ˆ ˆb C b

−  

returns the same value of 
C

Q  as shown theoretically in (1.55).  

In addition, 2' 568
ijkijk

yy y = =∑  so that ( )' , , , 26.0667SSE Ry y= − =µ α β γ . 

Hence, 
30.2254 / 2

6.96
26.0667 /12

CF = =  and the corresponding P-value equal to 

2,12Pr( 6.96) 0.01F ≥ =  indicates that there is clear evidence against the 

hypothesis of no interaction.  

We might be inclined to go further by using ( )| ,R α µ β  (respectively 

( )| ,R β µ α ) and the corresponding F statistics. However, it is only under an 

additive model that these statistics provide meaningful tests of hypotheses. In 

such a case, ( )| ,F α µ β  allows testing that 1I −  linearly independent contrasts 

i I
−α α  are all equal to zero. Otherwise (interaction model), the hypothesis being 

tested with that F statistic turns out to be very tricky. For instance, Herr (1986) 

and Searle (1987) showed that using ( )| ,F α µ β  is equivalent to testing the 

equality of  

 
** '**i i

=µ µ  for all i   

where ( ) 0** *1
/

J

i ij j ij
n n

=
= ∑µ µ  and ( ) 0* 1

/
I

j ij ij ji
n n

=
= ∑µ µ with 

0 1

J

i ijj
n n

=
=∑  and 

0 1

I

j iji
n n

=
=∑ .  
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Anyway, the fact remains that there is no legitimate definition of main effects 

when interaction occurs. For instance, in a treatment (A) by block (B) design, a 

natural way to characterize the treatment main effect is to consider its arithmetic 

mean effect over the different blocks  

 ( )1
/

J

i ijj
J. =

= ∑µ µ , (1.65) 

so that the hypothesis being tested becomes 

 ( ) ( )1 1
/ / 0

J J

i ij I Ijj j
J J

= =

 + − + =  ∑ ∑α γ α γ  for 1,...,i I=  

In that case, one can get back to the general formulation 
*

0
: 'H k b 0=  and the 

corresponding statistic given in (1.47). Here testing the hypothesis 
1 2 0. .− =µ µ  

is equivalent to testing ( )* * *1
31 11 12 0+ + =α γ γ  (see exercise 1.9). 

Given ( )1 1
3 3' 0 1 0 0k = , and using the solutions *b̂  of the full model, 

one has *ˆ' 1.0444k b = −  and ( )
1

*' *' 0.30037k X X k
−

=  so that 3.5919
A

Q =  and 

2ˆ/ 1.6535
A A

F Q= =σ  with a P-value of ( )12Pr 3.5919 0.22T ≥ = .  

Computations can alternatively be carried out using the constrained system 

*'k b 0=  presented in (1.56) and (1.57). Letting ( )', 'θ b= λ , the solutions are 

ˆ ' 5.17073, 1.02439, 3.2439,2.7805,5.1707, 2.0976, 3.4390θ = − − − −   

and ˆ ' ' 538.3414θ X y = . Then, 
A

Q  is obtained as the difference between 

( ) 541.9333R full =  and ( ) 538.3414R constrained =  that is 3.5919 as 

previously.  

1.5 Additional features 

1.5.1 Geometrical interpretation 

Here y  is viewed as an element of an N  vectorial space N
R . Let us consider 

the subspace ( ) { }:X µ µ Xβ= =C with 
pβ∈R  of dimension p  spanned by the 
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columns of X . The method of OLS consists of finding an element of this 

subspace such that the Euclidian norm 
2

y Xβ−  is minimized.  

Geometrically this condition is equivalent to taking Xβ  as the orthogonal 

projection of y  on ( )XC  (Harville, 1997). This implies that y Xβ−  is 

orthogonal to any column vector jx  of X , or equivalently that the scalar 

products ( )'

j
x y Xβ−  are all zero, in other words that ( )'X y Xβ 0− = . The 

corresponding system in β  has a unique solution β̂  which is the OLS estimator.  

An illustration is shown in Figure 1 in the plane Π  spanned by ( )1 2
,X x x= with 

OA
����

 being the orthogonal projection of OM
�����

 where OM OA AM= +
����� ���� �����

 is 

equivalent to ( )y Py I P y= + − . Since OA Py=
����

, P  is an orthogonal projector 

of y  on ( )XC ; similarly, since ( )AM I P y= −
�����

, I P−  is called the orthogonal 

projector on  ( )X
⊥
C , the complementary orthogonal subspace of ( )XC . 

To see that P  is indeed a projection, consider the scalar (or inner) product of 

vectors OM
�����

 and OA
����

 noted < ,OM OA >
����� ����

. By definition 
2

< ,OM OA OA>=
����� ���� ����

 and 

has algebric counterpart 
2' 'y Py y P y=  thus implying that P  is idempotent, and 

consequently a projector.  

Following the Pythagorean theorem, 
2 2 2

= +OM OA AM
����� ���� �����

, which is 

equivalent to ( )' ' 'y y y Py y I P y= + −  with ( )
2

OA R β=
����

and 
2

AM SSE=
�����

. 

As such, testing the null hypothesis 
0 : 'H C β 0=  amounts to searching for a 

vector OB
����

 belonging to subspace D  of ( )XC  with a lower dimension r p<  

such that OB
����

 is the orthogonal projection of y  onto this subspace. The OBA  

triangle is right-angled in B  according to the so-called theorem of the three 

perpendiculars. Hence, 
2 2 2

= +OA OB BA
���� ���� ����

.  
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In the case of D  corresponding to 
0 2:H β 0= , this is tantamount to writing 

( ) ( ) ( )1 2 1 2 1
, |R R Rβ β β β β= + . The test of 

0H  takes advantage of the fact that 

the statistic ( )
2

2 1|R BAβ β =
����

 is independent of 
2

SSE AM=
�����

 since BA
����

 and

AM
�����

 are orthogonal vectors.  

 

 

Figure 1. Geometric interpretation of OLS 

 

1.5.2 Generalized least squares 

We consider the same model as in (1.1) y Xβ e= +  but now assuming that 

( )VarV e=  has a general structure not necessarily diagonal nor homogeneous.  

 ( )~ ,y Xβ V . (1.66) 

V  being a variance covariance matrix, it is positive definite, and thus can be 

expressed via a Cholesky decomposition as 'V UU=  where U  is a lower 

triangular matrix of full rank.  

Let us define the one to one linear transformation  

 
* * 1y Uy y U y−= ⇔ = ,  (1.67) 
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the model for *y  can be written as 

 
* * *y X β e= + , (1.68) 

with 

 
* 1 * 1,  X U X e U e− −= = .  (1.69) 

Now, the model (1.68) is linear in β  and has a residual term *
e  with distribution  

( )~ ,
N

e 0 I . Hence, we can apply to it standard OLS techniques. In particular, the 

LS estimation of β  is a solution of the system * * * *ˆ' '
X X β X y= .  

Replacing *X  and 
*y  by their original expressions (see 1.67 and 1.69) and given 

that ( )
11 1'V U U

−− −= , this system becomes 

 1 1ˆ' 'X V Xβ X V y
− −= . (1.70) 

This system is usually referred to as the system of generalized least squares and 

β̂  as the generalized least squares (GLS) estimator.  

In fact, as shown by the formula (1.70), if V  can be known up to a 

proportionality constant V V∝ , a solution β̂  can be obtained by replacing 1
V

−  

with 
1V−
. 

The decomposition ( )* * * * *
y P y I P y= + −  with * * *ˆP y X β=  and ( )* * *ˆI P y e− =  

still applies. Premultiplying by U  on both sides, and replacing 
*y  by 

1U y−
 gives 

 ( )ˆ ˆy Xβ e Qy I Q y= + = + − , (1.71) 

where 
* 1Q UP U−= , or as a function of X  and V , 

 ( )1 1' 'Q X X V X X V
−− −= . (1.72) 

Since ( )' 'P X X X X
−

= , Q  (also denoted as 1,X V
P − ) is the orthogonal projector on 

( )XC  but now, according to the 1
V

−  metric . Both Q  and I Q−  are idempotent 

(see exercise 1.10) and thus satisfy 

 ( )Q I Q 0− = .  (1.73) 
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The GLS estimator ˆ'k β  of an estimable function 'k β  is obtained by  

 ( )1 1ˆ' ' ' 'k β k X V X X V y
−− −=  (1.74) 

where ( )1'X V X
−−  is any g-inverse of 1'X V X

− . 

An estimable function 'k β  is defined as previously in reference to invariance 

with respect to the choice of the g-inverse in (1.74) and must then verify  

 ( )1 1' ' ' 'k k X V X X V X
−− −=  (1.75) 

However, the matter simplifies since ˆ'k β  is an estimable function under (1.66), 

if and only if, it is estimable under the simple model ( )2~ ,
N

y Xβ Iσ (see 

exercise 1.11). 

Moreover, the GLS estimator of ˆ'k β  is again, as OLS was in the case of 

2

N
V I= σ , the BLUE of 'k β  such that 

 ( )ˆ' 'E k β k β= , (1.76) 

 ( )1ˆ( ' ) ' 'Var k β k X V X k
−−= . (1.77) 

Let us assume that V  is known up to a coefficient of proportionality 2σ  

 
2V V= σ  (1.78) 

and premultiplying (1.71) by 
1'y V−
gives 

 ( )1 1 1' ' 'y V y y V Qy y V I Q y
− − −= + − . (1.79) 

Using similar notations as in the case of OLS, (1.79) can be expressed as  

 ( )1' R SSEy V y β
− = + , (1.80) 

with 

 ( ) 1ˆ ' 'R β β X V y
−= , (1.81) 

 ( )1'SSE Ry V y β
−= − , (1.82) 

where β̂  is a GLS solution to 1 1ˆ' 'X V Xβ X V y
− −= . 
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If unknown, the parameter 2σ  can be estimated unbiasedly as 

 ( )2ˆ /
X

SSE N r= −σ  (1.83) 

In the same way, the hypothesis 
0 : 'H C β 0=  is tested via the same kind of 

statistic as in (1.44)  

 
( )
/

/

C

X

Q r
F

SSE N r
=

−
, (1.84) 

but here, with  

 ( )
1

1ˆ ˆ' ' ' 'Q β C C X V X C C β
−−− =   

. (1.85) 

1.6 Definition of mixed models 

The extension of the linear model y Xβ ε= +  with ( )VarV ε=  being any kind of 

variance covariance matrix allows to relax the assumption of uncorrelated 

residuals and of homogeneous variances. But, formulated this way, the model is 

going too far since it generates ( )1 / 2N N +  possibly distinct elements whose 

estimation from a sample of N  observations might be problematic if not 

impossible.  

Therefore, there is a real need for assigning some structure to V  so as to reduce 

the number of unknown parameters involved in its expression. There are at least 

two ways to do that. First, some structure can be imposed directly on the 

elements of V  on account of the type of data and design. Such situations arise 

for instance with longitudinal or spatial data for which V  may a priori take 

some specific forms such as “autoregressive” or “Toeplitz” matrices according 

to the usual mathematical and software terminology. Alternatively, the vector of 

residuals ε  can be decomposed into several components attribuable to 

potentially influencing factors thus resulting indirectly in some structure of V  as 

proposed originally by Rao and Kleffe (1988).  

Another approach consists in viewing mixed models as hierarchical models in 

which the parameters of the first level (data) describing some characteristics of 
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the experimental units (e.g individuals) are themselves described at a second 

level as distributions due to sampling of these experimental units in a larger 

population. These models have been introduced at the start in sociological 

research under the name of multilevels (see e.g. Goldstein, 1995), and 

formalized in a Bayesian context by Lindley and Smith (1972). We will now 

review these two approaches.  

1.6.1 Rao and Kleffe’s structural approach 

According to these authors (in short RK), a mixed linear model is a linear model 

y Xβ ε= +  as in (1.66) in which the error random vector ε  is decomposed as a 

linear combination of unobservable structural random variables 
k

u  such that  

 
0

K

k kk
ε Z u Zu

=
= =∑ , (1.86) 

where ( )0 1
, ,..., ,...,

k K
Z Z Z Z Z=  is a concatenation of 1K +  incidence matrices 

k
Z  of dimension ( )x

k
N q  and ( )' ' ' '

0 1, ,..., ,..., '
k K

u u u u u=  is the corresponding 

0

K

kk
q q

=
=∑ dimensional vector of structural random variables ( )k kl

uu = , 

1,...,
k

l q=  such that  

 ( )~ ,
u

u 0 Σ . (1.87) 

Although notations in (1.86) originate from symmetry arguments, they should 

not hide the fact that the true residual term 
0u e=  with 

0 N
Z I=  is to be 

distinguished practically from the other K  structural random variables 
1,..., K

u u  

conveying real information about variation factors.  

In the RK presentation, the variance covariance matrix 
u
Σ  is assumed to be a 

linear function of real-valued parameters 
m

θ , 1,...,m M=  weighed by square 

( )xq q  matrices of known coefficients 
m

F  such that 

 
1

M

u m mm
Σ F

=
=∑ θ . (1.88) 

No specific restrictions are set on 
m

θ  and 
m

F  but these quantities should be 

coherent with 
u
Σ  being in the parameter space.  
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Under this model as '
u

V ZΣ Z= , the variance covariance matrix V  can be 

expressed in turn as a linear combination of the 
m

θ  parameters 

 
1

M

m mm
V V

=
=∑ θ  (1.89) 

where '
m m

V ZF Z= .  

Therefore, according to RK, a linear mixed model displays linearity properties 

both at the levels of expectation (µ Xβ= ) and variance (1.89). Here, random 

effects turn out to be a device to assign some structure on V  so as to reduce the 

number of parameters involved in V .  

Notice that we can arrive at (1.89) without setting a linear function of structural 

variables on ε  since any ( )xN N  variance ( )ij
V = σ  matrix can be written as 

ij iji j
V V

≤
=∑ σ . This indicates that a linear relationship as (1.89) does not 

necessarily imply parsimony.  

Nevertheless, identified structural random variables (in short random effects) 

may be of special interest per se in practice. For instance, in quantitative 

genetics, the analysis incorporates a vector u  representing genetic or breeding 

values of individuals, whose prediction serves as a basis for selection of the top 

ones. Similarly, in repeated data analysis, subject specific random effects allow 

to predict individual profiles pertaining to e.g. marker information or growth 

characteristics.  

Example 1.5 Clusters and the intra class structure 

In many situations, data are structured according to clusters such as litters in 

biology, families in genetics, blocks in agronomy, individuals in clinical trials so 

that data can no longer be assumed uncorrelated. Let 1,...,i I=  be the index for 

cluster and 1,...,
i

j n=  the one for an observation j  within cluster i , a 

convenient way to take this structure into account is to describe the observations 

ijy  by the following model 

 
ij ij ij

y
'x β= + ε , (1.90) 
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where ijx  is a ( )x1p vector of covariates influencing response with coefficients 

or fixed effects β , and ijε  the random residual term decomposed as 

 ij i iju e= +ε , (1.91) 

assuming that the cluster effects 
i

u  are i.i.d. ( )2

10,σ  and the within components 

ije  are i.i.d. ( )2

00,σ and independent of the '
i

u s .  

Then, ( ) 2 2

' ' 0 1,
ij i j

Cov = +ε ε σ σ  if 'i i= , 'j j= , and ( ) 2

' ' 1,
ij i j

Cov =ε ε σ  if 'i i= , 

'j j≠ . Let 
i

V  be the ( )x
i i

n n  variance covariance matrix of ( )i ij
yy = ,

i
V  can be 

written as in (1.89) as a linear function of the variance components 
2

0
σ  and 

2

1
σ  

as 

 
2 2

0 1i ii n n
V I J= +σ σ , (1.92) 

where 
inI  is the ( )x

i i
n n  identity matrix and 

i i in n n

'J 1 1=  denotes an ( )x
i i

n n  

matrix with all elements equal to 1.  

Hence, the resulting V  matrix is as follows 

 

1

1

... ...

... ... ... ... ...

... ...

... ... ... ... ...

... ... ...

I

ii i

I

V 0 0

V V0 V 0

0 V

=

 
 
 
 = =
 
 
  

⊕ . (1.93) 

This structure of V  with 
i

V  defined in (1.92) is known as «compound 

symmetry » or « intra-class correlation » since the correlation among any pair 

'j j≠  of observations in any cluster i  is equal to 

 
2

1

2 2

1 0

=
+

σ
ρ

σ σ
, (1.94) 

Oddly enough, the covariance between observations within a cluster in this 

model is equal to the variance of the true cluster effects  

 ( ) ( )2

1 ',
ij ij i

Cov y y Var u= =σ , (1.95) 
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thus constraining this covariance (or correlation) to be positive (or nil). 

However, strictly speaking, this condition is not mandatory for 

( ) ( )2 2

0 1 1
i ii n n

V I J = + − + σ σ ρ ρ  being within the parameter space (see exercise 

1.12). 

1.6.2 Hierarchical models 

The rigorous formulation of hierarchical models dates back to Lindley and 

Smith (1972) for the analysis of linear models in a Bayesian framework. Now, 

we will briefly review this approach. Let us consider a Gaussian sampling 

process according to the following two stages 

 i) ( )| , ~ ,y θ R Zθ RN  (1.96) 

 ii) ( )| , ~ ,θ β G Aβ GN . (1.97) 

The first stage i) assumes that the data vector satifies a usual linear model 

 y Zθ e= +  (1.98) 

where Z  is a ( )xN q  matrix of known covariates and θ  is the ( )x1q

corresponding vector of coefficients, and e  is the vector of residuals assumed 

( )~ ,e 0 RN .  

In the second stage ii), the vector θ  of parameters is also assumed to be 

randomly sampled according to a linear model 

 θ Aβ u= + , (1.99) 

with population mean Aβ  and deviation u  from this mean being distributed 

with mean 0  and variance covariance G , viz ( )~ ,u 0 GN .  

By combining these two stages, one obtains the marginal distribution of the data 

given β ,G  and R  after integrating out u  

 ( )| , , ~ , 'y β G R ZAβ ZGZ R+N . (1.100) 

In the linear case, the distribution (1.100) can be derived by inserting the model 

(1.99) for θ  into the model (1.98) for y . Letting X ZA= , this reduces to the 

usual Henderson formula for linear mixed models 
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 y Xβ Zu e= + + , (1.101) 

where 

 ( )E y µ Xβ= = , (1.102) 

 ( ) 'Var y V ZGZ R= = + . (1.103) 

Assuming for the sake of simplicity that 
2

0 N
R I= σ  and 2

1 q
G I= σ , one 

immediately recognizes the typical linear structure of V  shown in (1.89).  

 
2 2

1 0
'

N
V ZZ I= +σ σ . (1.104) 

Although very convenient, normality of the distribution of the random effects 

and residuals is not mandatory; this assumption can be discussed according to its 

plausibility and the kind of estimators investigated.  

Example 1.6 Random coefficients models for growth data 

The hierarchical model can be illustrated with the small data set due to Pothoff 

and Roy (1964) about facial growth measurements made on 11 girls and 16 boys 

at 4 equidistant ages (8,10,12 and 14 years). On account of a graphical 

visualization of individual profiles, it turns out that this data set can be analyzed 

by adjusting a straight line per individual.  

Let i  designate the index for gender ( 1,2i =  for girls and boys respectively), j  

the index for period ( 1,2,3,4j = ) with jt  being the age of the child, and k  be 

the individual index within gender ( 1,...,11k =  for 1i =  and 1,...,16k =  for 2i =

), the first stage model can be written as 

 ijk ik ik j ijky A B t e= + + , (1.105) 

where 
ik

A  and 
ik

B  represent the intercept and the slope of the regression line, 

respectively, ijke  being the residual term assumed i.i.d. ( )20,
e

σN .  

Suppose now that the individuals measured are a random sample from a given 

population of children of both sexes, then the parameters 
ik

A  and 
ik

B  attached to 

individual ik  are random variables, the expectation and variance of which can 

be specified as follows 
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2

2
~ ,

ik i a ab

ik i ab b

A

B

     
     
       

α σ σ

β σ σ
N . (1.106) 

This is equivalent to writing 

 ,  
ik i ik ik i ik

A a B b= + = +α β , (1.107) 

where 
ik

a  and 
ik

b  represent the deviations in intercept and slope respectively for 

each subject ik  from their gender specific population means 
iα  and 

iβ .  

Notice that the assumption of randomness of the individuals translates here with 

the specification of the two first moments of the attached parameters 
ikA  and

ikB .  

Now, combining (1.107) and (1.105) gives 

 ijk i i j ik ik j ijky t a b t eα β= + + + + , (1.108) 

in which the fixed part i i jtα β+  describes the gender specific population profile 

and the random part ik ik ja b t+  its subject specific deviation counterpart.  

Let ( )ik ijky=y  and ( )ik ijke=e  for 1,2,3,4j = , ( )1 2 1 1 2 1, , , 'α α α β β β= − −β , 

( ), 'ik ik ika b=u , ( )4 4 4, , ,ik =X 1 0 t 0  if 1i =  and ( )4 4, , ,ik =X 1 1 t t  if 2i =  and 

( )4 ,ik =Z 1 t  with ( )1 2 3 4, , , 't t t t=t , then the model (1.108) can be written under 

its typical linear mixed model form  

 
ik ik ik ik ik= + +y X β Z u e , (1.109) 

where ( )0~ ,ik iidu 0 GN  and ( )0~ ,ik iide 0 RN  with 0G  being the variance 

covariance matrix in (1.106) and 
2

0 4eσ=R I .  

 

1.6.3 Multilevel linear models 

In many areas (industry, education, biology, medicine), data naturally have a 

nested structure. For instance, workers are nested within firms, children within 

schools, animals within litters, patients within clinics. Models to account for 

such clustering in data consist of introducing random effects so as to partition 

the variation into, between and within cluster components. In the examples 
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given above, there are two levels of variation: elementary response at the lowest 

level (level 1 by convention) and cluster at the highest level (level 2). But the 

hierarchy may be more complex with any number of levels. For instance, in 

crossnational studies, repeated observations are nested within persons, these 

persons are nested within organizational units such as schools, clinics which 

themselves might be nested within districts, districts within states, states within 

countries, etc… 

In the sociological sciences, these models are often referred to as multilevel 

models (Goldstein, 1995). In fact they are from a theoretical point of view a 

special case of the hierarchical models described previously and they just appear 

as such in some areas of applications. This is the reason why we are just going 

to briefly outline their particularity in terms of terminology, formalism and 

notations.  

Although the hierarchy can incorporate many levels, this presentation is 

restricted to the two level linear model which displays the essential features of 

such models. A specificity, if not a difficulty, for the non-expert lies in the 

notations which in some cases (e.g. indices of factors) are reversed as compared 

to the traditional mixed model literature; 

Here, the index i  denotes the level-1 units (e.g. measurements) while i  refers to 

level-2 units (e.g. individuals). There are 
2n  units at level-2 ( )2

1,...,j n=  and 1 jn  

for each level-1 unit nested within level 2 ( )11,...,
j

i n= .  

Letting ( )
11 j

j ij i n
yy

≤ ≤
=  for 

21,...,j n= , the general model for responses involving 

q  level-2 parameters can be written as 

 ( )1

j j j j
y Z β b= + , (1.110) 

where jZ  is a ( )1 x
j

n m matrix of explanatory variables with corresponding 

( )x1m  vector jβ  of unknown parameters, and 
( )1

j
b is the ( )1 x1

j
n vector of the 
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level-1 random components ( )1

ij
b assumed i.i.d., and usually Gaussian, with mean 

zero and variance covariance viz. 
( ) ( )( )1 1

~ ,
j iid j

b 0 GN .  

These components correspond to the usual residual terms ( )1

j j
b e=  of a linear 

mixed model with ( )1

j
G  taken often as 

( )1 2

1 ijj n
G I= σ .  

At level-2, the model for jβ  involves both covariate information such as discrete 

factors cross-classified with cluster units (e.g. treatments) and random variations 

among those level-2 units. It can be written as 

 ( )2

j j j
β A β b= +  (1.111) 

where jA  is a ( )xm p  matrix of covariates with corresponding ( )x1p  vector β  

of unknown coefficients, and ( )2

j
b  is the ( )x1m  vector of the level-2 random 

effects (e.g. individuals, litters) assumed 
( ) ( )( )2 2

~ ,
j iid

b 0 GN .  

Several comments are worth mentioning at this stage. First, letting j j jX Z A=  

and substituting equation (1.111) into (1.110) gives 

 ( ) ( )2 1

j j j j j j
y X β Z b b= + + , (1.112) 

which clearly indicates that multilevel linear models belong to the class of linear 

mixed models as defined previously.  

Secondly, in certain instances, it may be suitable to assume that some 

components jkβ  of jβ  have no random counterparts (see example 1.7). This 

may be justified either on theoretical or data-based grounds. For instance, the 

estimation of the corresponding variance 
( )2

k
g  can be very small suggesting that 

this component does not vary practically across level-2 units. In that case the 

model for jβ  becomes  

 ( )2

2j j j
β A β B b= + , (1.113) 

where 
2B  is a ( )x 'm m  appropriate design matrix having e.g. typical form 
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2

1 0

0 1

0 0

B

 
 =  
 
 

 if component 3 is not random. 

Extensions of such models to higher levels is straightforward. For instance a 3 

level model ijk can be expressed as the concatenation of three different models, 

each of them operating at a given level of the hierarchy 

 
( )1

ijkijk jk ijk
y b

'
z β= + , 

 ( )2

2jk jk k jk
β A β B b= + , 

 
( )3

3k k k
β A β B b= + . 

Such models can generate complex variance covariance structures of the 

observations especially in the case of random coefficient models (exercise 1.14).  

Example 1.7 Growth data of children (1.6 continued) 

Here the level-1 units are measurements ( )1,...,4i =  and level-2 units are 

children( )1,...,27j = . The level-1 model can be written as 

 ( )1

0, 1,ij j j j ij
y t b= + +β β  (1.114) 

or, in matrix notations,  

 ( )1

j j j j
y Z β b= +   

as in (1.110), with 

1

2

3

4

1

1

1

1

j

t

t

t

t

Z

 
 
 =
 
 
 

 and 
0,

1,

j

j

j

β
 

=  
 

β

β
, 0, jβ  and 1, jβ  referring to the 

intercept and slope of subject j . 

At the second level (subjects), 0, jβ  and 1, jβ  are decomposed into 

 ( )2

0, 0, 0 0,j B j j
a b= + ∆ +β β β  

 ( )2

1, 1, 1 1,j B j j
a b= + ∆ +β β β , 

or, in vector notations, 
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 ( ) ( )2

2 2

B

j j ja
β

β I I b
∆β

 
= + 

 
, (1.115) 

where ( )0 1, '
j j j
β = β β , ( )0, 1,, '

B B B
β = β β  refers to intercept and slope in boys, 

( )0 1
, '∆β = ∆ ∆β β  to the differences between girls and boys in intercept and slope 

respectively; ja  is an indicator variable equal to 1 if the child is a girl and zero 

otherwise ; and 
( ) ( ) ( )( )2 2 2

0, 1,, 'j j jb bb =  refers to the subject j  specific random 

deviations from their population means in intercept and slope respectively 

assumed i.i.d. with mean 0  and variance 
( )

( ) ( )

( ) ( )

2 2

2 11 12

2 2

12 22

g g

g g
G

 
=  
 
 

. 

As indicated previously, we may consider the submodel having no random 

component in the subject specific slope 1, jβ . 

 
( ) ( ) ( )2 1

0, 1, 0 0, 1,ij B B j j j B B j ij
y t b a t b= + + + ∆ + ∆ +β β β β . (1.116) 

Imagine now that children are nested among 
3n  districts or other geographical 

areas (indexed by k ), we can readily extend the previous model to take into 

account this additional level of clustering.  

 

1.6.4 Definition and critical assessment 

Definition 1.3 Under the hierarchical presentation, a linear mixed model can be 

defined as a linear model in which all or part of the parameters associated to 

some experimental units are treated as random variables due to random 

sampling of these units from some predefined larger population.  

It is important to emphasize that this definition relies at least conceptually on 

some random device to determine what experimental units will be taken out of a 

given population of them. Consequently, parameters and their inference refer to 

this population of experimental units. This reference to a random process was 

clearly outlined in the beginning by Eisenhart (1947) to distinguish what he 
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called ANOVA Models I (fixed) and Models II (variance components). Features 

of fixed and random models were also discussed by Wilk and Kempthorne 

(1955).  

In some instances, the distinction between fixed and random effects is relatively 

easy to do. If an experimenter wants to compare some treatments (e.g. drugs, 

varieties,…), he will not draw them at random in a population of possible 

treatments so that treating this factor as fixed and not random makes sense. 

Conversely, animals, individuals or plants selected for such comparisons can be 

appropriately sampled at random from some population(s) and viewing their 

effects as random is generally appropriate. 

But, in many cases, data sets do not originate from rigorously planned 

experiments and the decision about the fixed or random status of some factors 

remains unclear, if not highly questionable. This is especially true for location 

and time effects such as field or year effects in agriculture and animal 

production. For instance, although, the calendar years per se are not drawn at 

random but successively, one may often infer that their effects on response are 

more or less unpredictable, and surely not repeatable as such.  

This perspective of possible repetitions of the experiment must be kept in mind 

when deciding whether some effects should be treated as fixed or random. If 

replicates have to be produced as for instance in a simulation study, would we 

assume that the effects of say levels 1,2,…, of this factor remain the same, or 

would we prefer to make these effects vary from one replicate to the other, and 

thus, draw them from some probability distribution?  

This perception of fixed vs random effects on how to generate them over 

replications of data sets may be very helpful not only in designing the 

operational models for the statistical analysis of the data, but also for studying 

the statistical properties of the estimators via simulation.  

Another concern is often put forward in order to decide whether effects are fixed 

or random which consists of what kind of inference the statistician would like to 
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make. Does he want to restrict inference to the particular effects present in the 

data set or to the parameters of the distribution from which they are sampled? 

This is for sure, an important point of debate but this issue should not be brought 

up before questioning how the experiment was designed and how data were 

collected. Actually, the goal of the analysis is not per se an argument whether 

effects are to be treated as fixed or random since the objectives should be in 

agreement with the design. Nevertheless, it is unsure that all these queries may 

help in reducing the reader’s headaches about this question “fixed vs random”; 

Salvation can come from a completely different point of view as the one 

proposed by Bayesian statistics. Instead of arguing about randomness or not of 

effects, Bayesians rather quantify the amount of knowledge (more precisely 

uncertainty) they have about such effects via probability distributions, the theory 

of which lies on rationality principles prior to observing data.  

In this case, probability does not represent the limiting relative frequency of 

occurrence of some events in an infinite number of trials but the degree of belief 

in a proposition. As clearly stated by Malécot (1947) “If one admits determinism 

in fact, this is not the phenomena that are random, rather, it is the knowledge we 

have about them”. Sometimes this precludes the paradoxal attitude of treating 

some effects as they were random while they are obviously not, as illustrated 

below.  

 

Example 1.8 Why treating bulls as random? (Example 1.5continued)  

Let us again consider the model of example 1.5 but now in the context of genetic 

evaluation of sires on the phenotypic value of their progeny (e.g. milk yield per 

lactation of daughters in dairy cattle)., 

 
ij ij i ij

y u e
'x β= + + , 

where ijy  is the milk yield of the jth heifer progeny ( )1,...,
i

j n=  sired by the ith 

bull ; 
i

u  the genetic transmitting ability (or breeding value) of that bull and ije , 
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the usual error term specific to this record assumed i.i.d. with mean zero and 

variance 
2

e
σ .  

In that model, environmental effects such as those of year, season and herd on 

yield ijy  are accounted for as fixed effects via the term
ij

'x β . Under its simplest 

form, this term reduces to a common population mean µ  and the model 

becomes 

 ij i ijy u e= + +µ . (1.117) 

Henderson (1984) proposed to the animal breeding community to rank bulls on 

the basis of what he called best linear unbiased prediction (BLUP) of 
i i

u= +µ µ

, that is , in the case of a known µ ,  

 ( )ˆ ˆ
i i i i

u b y
.

= + = + −µ µ µ µ , (1.118) 

where ( )1
/

in

i ij ij
y y n. =

= ∑  and ( ) ( ), /
i i i i

b Cov u y Var y
. .

= .  

The main reason for that was that ˆ
i

µ  minimizes the mean squared error of 

prediction ( )
2

ˆ
i i iMSE E  = −

 
µ µ  which is also equal to ( )

2
ˆ

i iE u u −
 

. In fact, 

this means that the 
i

u ’s are viewed as random effects ( )2~ 0,
i iid u

u σ  so that 

( )2 2 2/ /
i u u e i

b n= +σ σ σ , this parameter acting as shrinkage factor of the sample 

sire mean 
i

y .
 towards the population mean µ .  

But, actually, progeny tested sires are far away from being a random sample of 

bulls since they have been highly selected prior to progeny testing on criteria 

related to 
i

u . In addition, on the contrary to what could have been said, there is 

nothing random in the theory of quantitative genetics regarding the definition of 

the transmitting ability of a given individual. Moreover, the purpose of animal 

breeding companies is to evaluate and compare these specific bulls but not to 

estimate parameters of the population which they come from. Therefore, 
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logically, sire effects ought to be viewed as fixed while they are treated as 

random in Henderson’s approach. 

The Bayesian approach represents a way to reconcile practice and logic by 

assigning a prior distribution to the 
i

u ’s (Lefort, 1980, Blasco, 2001). In 

addition, this prior information is usually invariant with respect to any 

permutation of the i  indices (exchangeability property) implying that they all 

have all the same distribution with mean zero and variance 
2

u
σ . Additional 

assumptions involve independence and normality but although very convenient, 

they are not mandatory. As a matter of fact, the Bayesian theory can 

accommodate prior distributions to real situations encountered in practice such 

as genetic kinship among bulls, heterogeneity in the recrutement of young bulls 

with some of them more selected than the others.  
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1.7 Appendix 

1.7.1 Properties of ( )' 'P X X X X
−

=  (see 1.18,1.19,1.20) 

Proof PX X=   

This is a corollary of the following two lemmas (see also Searle, 1982) 

Lemma 1: For any real ( )xn n  matrix ( )ij
a= , the condition 'A A 0=  implies

A 0=   

As a matter of fact, the jth element of 'A A  is equal to 2

1

n

iji
a

=∑ . Its nullity 

implies that 0ija =  for any i  and the same reasoning applies to any element j of 

the product. 

Lemma 2: For any real R , S  and X  matrices, the property ' 'RX X SX X=  

implies ' 'RX SX= .  

This resorts from the following identity 

 ( )( ) ( )( )' ' ' ' ' ' ' 'RX X SX X R S RX SX RX SX− − = − −  

If ' 'RX X SX X= , then the right hand side of the identity is nil and we can apply 

to it lemma 1. Hence ' 'RX SX= . 

A g-inverse ( )
_

'X X  of 'X X  verifies by definition ( )' ' ' 'X X X X X X X X
−

= . 

Applying lemma 2 to this identity yields ( )' ' ' 'X X X X X X
−

=  that is after 

transposition PX X=  (QED).  

Proof ( )' 'X X X X
−

 is invariant to the choice of ( )'X X
−

.  

Let 
1G  and 

2G  two different g-inverses of 'X X . Then, knowing that PX X= , 

this implies that 
1 2' 'XG X X XG X X=  which following lemma 2 reduces to 

1 2' 'XG X XG X=  (QED). 

Proof ( )' 'P X X X X
−

=  is idempotent 

By definition, ( ) ( )2 ' ' ' 'P X X X X X X X X
− −

=  that is ( )2 ' 'P PX X X X
−

= . Since 

PX X= , this yields ( )2 ' 'P X X X X P
−

= =  (QED).  
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1.8 Exercises 

1.1 Let X  be a ( )xN p  matrix of independent variables of a linear model such 

that p N≤ . Show that ( ) ( )'rank rankX X X=  

 

1.2 Consider the following LS system of equations ˆ' 'X Xβ X y=  

 

 

1

2

3

ˆ
41 64 23 119

ˆ64 29 35 112

ˆ23 35 58 7

    
    − =    
    − − −     

β

β

β

 

 

1) What is the rank of 'X X  ?  

2) Which functions among the following ones are estimable ?  

 a) 
1 2+β β : b) 

1 2 32− +β β β  :c) 
1 2−β β  :d) 

2 3+β β  e) 
1 2 32 + −β β β  

 

1.3 Show how to derive formula ( )
1* ' 'X XT TT

−
=  in (1.10) and check 

numerically on example 1.3.  

 

1.4 Show that the BLUE of the estimable function 'k β  in the linear model 

y Xβ e= + , ( )2~ ,
N

e 0 Iσ  is ˆ'
OLS

k β   

 

1.5 Let 'H GX X=  where G  is any g-inverse of 'X X . Show that 

1) H  is idempotent and 2) ( ) ( )rank rankH X= . 

 

1.6 Let G  be a standard g-inverse of 'X X , show that ( )' '
R

G G X X G=  is a 

symmetric, reflexive g-inverse of 'X X . 
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1.7 Show how to derive the result ( )'

0
ˆ( ) ' ' 'SSE Restricted y y β X y λ m= − +  given 

in (1.59) 

 

1.8 Analyze the following data set pertaining to scores given by experts (factor 

A) to animals out of different sires (factor B) as in Example 1.4, but using sum 

(Sy) and sums of squares (Sy2) instead of elementary observations.  

 

Cell Expert Sire n Sy Sy2 

1 1 1 4 344 30242 

2 1 2 3 258 22662 

3 1 3 4 318 25758 

4 1 4 4 274 19036 

5 2 1 4 474 61366 

6 2 2 2 211 22741 

7 2 3 1 115 13225 

8 2 4 4 325 27445 

9 3 2 2 256 34946 

10 3 3 4 509 73773 

11 3 4 4 357 33065 

n =number of observations Sy : sum of the observations per suclass ; Sy2 : sum 

of squares 

 

1.9 Consider a two-way ANOVA model ( )ijk i j ij
E y = + + +µ α β γ  for 1,2i = , 

and 1,2,3j =  with ( )ij ijk
E y=µ  being the ij  cell mean (Example 1.4) Show that 

testing the null hypothesis 
0 1 2:H . .=µ µ  where

2

1
½

i ijj. =
= ∑µ µ  is equivalent to 

testing 

 ( )* * *1
31 11 12 0+ + =α γ γ   
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where
*

1 13 23
= −α µ µ , ( ) ( )*

11 11 21 13 23= − − −γ µ µ µ µ  ( ) ( )*

12 12 22 13 23= − − −γ µ µ µ µ . 

 

1.10 In the linear model y Xβ ε= + , ( )~ ,ε 0 V , show that 

( )1 1' 'Q X X V X X V
−− −=  defined in (1.72) and 

N
I Q−  are idempotent.  

 

1.11 Show that 'k β  under the linear model y Xβ e= + , ( )~ ,e 0 V  is an 

estimable function, if and only if, it is estimable under the same model with 

( )2~ ,e 0 Iσ  

 

1.12 Let ( )1
n n n

R J I= + −ρ ρ  designate an intra class correlation structure 

among observations within a cluster of size n , with correlation coefficient ρ . 

Show that ρ  is not necessarily positive.  

 

1.13 Consider the model y Xβ ε= + , ( )~ ,ε 0 V  where P  is defined as 

( )1 1 1 1' 'P V V X X V X X V
−− − − −= − .  

1) Show that ( )N
I VP y−  and VPy  are uncorrelated random variables.  

2) Prove that ( )Var
N

I VP y V VPV− = − .  

3) Show that 
1V P− −  is a g-inverse of V VPV− .  

4) Use the previous results to derive the GLS estimator of Xβ  from the linear 

model for ( )N
I VP y− .  

 

1.14 Consider a random coefficient model 
'

it i i i it
y a bt ex β= + + +  similar to those 

described in (1.108 and 1.114-115) where β  refers to fixed effects and 
i

a  and 
i

b  

correspond to the individual deviations in intercept and slope respectively such 
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that the ( ), '
i i i

a bu =  are assumed ( )~ ,
i iid

u 0 G  with ( )i it
ee =  being 

( )2~ ,
i iid n

e 0 Iσ . 

1) Give expressions of ( )it
Var y  and ( , )

is it
Cov y y  for s t≠  as a function of time 

points ( ),s t , 2σ  and elements of 
00 01

01 11

g g

g g
G

 
=  
 

.  

2) Extend these expressions to a second degree time adjustment 

' 2

it i i i i it
y a bt c t ex β= + + + + , and next to any degree q .  

 

1.15 Consider the one-way model as in Example 1.8 ij i ijy u e= + +µ , 1,...,i I=  

and 1,...,
i

j n=  with the cluster effects 
i

u  assumed i.i.d. ( )2

10,σ  and the within 

components ije  being i.i.d. ( )2

00,σ and independent of the '
i

u s . 

1) Using the system of equations 1 1ˆ' 'X V Xβ X V y
− −= , show that the GLS 

estimator µ̂  of µ  can be expressed as a weighted mean ( )1 1
ˆ /

I I

i i ii i
w y w.= =

= ∑ ∑µ  

of ( )1
/

in

i ij ij
y y n. =

= ∑  where 
i

w  is an appropriate weighing factor.  

2) In the case of 
2

1
0>σ , give a simple expression of 

i
w  as a function of 

i
n  and 

2 2

0 1
/=λ σ σ  and discuss the result obtained accordingly.  
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 2 

Prediction of random effects  
 

 

 

 

2.1 Introduction 

In everyday life, the concept of prediction from observations arises naturally 

when asking questions as: 

 i) What is the IQ of this person knowing his age, his social environment and 

his test scores? 

 ii) How tall will this boy or that girl born 1 year ago be when he/she is 20 

given his height records? 

 iii) How can the genetic merits of bulls be compared given their daughter 

milk’s yield performance? 

 iv) What is the pattern of the ore grade in a mining block from observed 

samples taken at different known locations? 

Usually, prediction and estimation will be considered as synonyms although 

they are not. Most people will not make a difference in the issue of predicting 

the height of a child at 20 versus that of estimating how much taller are boys are 

than girls at that age, thus requiring a definition of this concept.  

This will lead us to review the different methods of prediction such as Best, Best 

Linear and Best Linear Unbiased Predictions (BP, BLP and BLUP respectively) 

according to the assumptions made on the joint distribution of the quantity to 

predict and the observations. In the next section, we will focus on an important 

indirect approach to BLUP known as Henderson’s Mixed Model Equations 

(HMME) and see also how these equations can be interpreted within a Bayesian 

framework.  
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2.2 Direct approach 

Definition 2.1 Making a prediction consists of substituting a non observable 

random variable W , (the predictand) in the conditions of the experiment, by a 

new random variable Ŵ , (the predictor), built as a function f  of an observable 

random variable Y  i.e. ˆ ( )W f Y=  such that the distribution of Ŵ  should be as 

close as possible to that of W  with respect to some criterion.  

Several criteria may be envisioned. This could be a formal measure of distance 

between two distributions as those of Kullback-Leibler, or more simply a 

criterion such as the mean square error ( )
2

ˆE W W −
  

. 

In summary, while estimation deals with inferring values to population 

parameters, prediction is concerned with random variables. 

Following to the pionnering work of CR Henderson in this field, different 

methods of prediction are of interest depending on the assumptions made on the 

joint density of ( ),W Y , the first one being known as Best Prediction.  

2.2.1 Best Prediction (BP) 

We will suppose that W is a scalar and Y  either a scalar or a vector. The best 

prediction of W  based on Y  is defined here with respect to the mean square 

error (MSE).  

Let us write ˆ ( )W f Y=  with upper case letters as the predictor, and ˆ ( )w f y=  

with lower case letters as a realized value of it.The MSE can be decomposed as 

 
2

2ˆ ˆ ˆ( ) ( ) ( ) ( )E W W Var W W E W E W   − = − + −    . (2.1) 

One can apply to the first term on the right side, the theorem of « conditioning-

deconditioning” i.e.  

{ } { }ˆ ˆ ˆ( ) ( ) ( )Y YVar W W E Var W W Y y Var E W W Y y   − = − = + − =    .(2.2) 
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Now, conditionally to Y y= , the random variable Ŵ Y y=  is equal to a constant 

say ŵ ; its expectation is then ŵ  and its variance is zero so that (2.2) reduces to 

ˆ ˆ( ) ( ) E( )
Y Y

Var W W E Var W Y y Var w W Y y− =  =  +  − =     . (2.3) 

The first quantity in (2.3) does not depend on the choice of the predictor; the 

second one vanishes if one chooses ŵ  as the conditional mean (Harville, 1990),  

 ˆ E( )w W Y y= = .  (2.4) 

By construction, such a predictor verifies 

 ˆ( ) ( ) ( )
Y

E W E E W Y y E W=  =  =   (2.5) 

so that the MSE reduces to only the variance term.  

It is thus unbiased (in the sense of 2.5) and minimizes (2.1) so that 

 ˆ( ) ( )
Y

MSE Var W W E Var W Y y= − =  =   . (2.6) 

Similarly, using the same reasoning, we can establish the expression of 

ˆ( , )Cov W W from the following identity 

( ) ( ) ( )ˆ ˆ ˆ( , ) , ,Y YCov W W E Cov W Y y W Y y Cov E W Y y E W Y y   = = = + = =
   

. 

The first term is nil since it involves the covariance between W Y y= and its 

expectation, and the second term is the covariance between Ŵ  and itself, so that 

 ˆ ˆ( , ) ( )Cov W W Var W= .  (2.7) 

Hence, Ŵ  and Ŵ W−  are uncorrelated so that 

 ˆ ˆ( ) ( ) ( )Var W Var W Var W W= + −  (2.8) 

Since ˆ( )Var W W− , the variance of prediction errors is always positive or zero, 

(2.8) indicates that ˆ( )Var W , the variance of the predictor in the population is 

always smaller or equal to ( )Var W  the variance of the predictand implying some 

restriction in the variability of the random variable after it has been predicted.  

Formula (2.8) can be rewritten as 

 ˆ ˆ( ) ( ) ( )Var W W Var W Var W− = −  (2.9) 
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Moreover, due to (2.7), 2
R  the squared coefficient of linear correlation between 

Ŵ  and W , is simply the ratio of the variance of the predictor to the variance of 

the predictand 

 
( )

2

2

ˆ , ˆ( )

ˆ ( )( ) ( )

Cov W W Var W
R

Var WVar W Var W

 
 = = . (2.10) 

Therefore, the variance of the prediction error is simply 

 ( )2ˆ( ) ( ) 1Var W W Var W R− = − .  (2.11) 

Since minimizing this variance is equivalent to maximizing 2
R , this formula 

indicates that the best predictor is also the function of Y  which maximizes 2
R .  

The result that the BP is the conditional mean was first established by Cochran 

(1951). It is both simple and important but assumes we know the joint 

distribution of W  and Y  and we are able to derive the expectation of the 

conditional distribution of W  given Y  , a situation that may not be trivial.  

Example 2.1 Best Prediction under normality 

Assume we want to predict W  based on vector Y when their joint density is 

Gaussian ( ),ΣµµµµN  with 
W

Yµ

 
 
 

µ
µ =µ =µ =µ = , and WW WY

YW YY

Σ
Σ

Σ Σ

Σ 
=  
 

.  

In this case, the conditional distribution of W  given Y y=  is well known; this is 

also a Gaussian distribution  

 ( )| ~ ,
W Y WW Y

W
. .

Y y Σ= µN , (2.12) 

with expectation  

 ( )1

W Y W WY YY Y. Σ Σ y
−= + −µ µ µµµµ , (2.13) 

and variance  

 
1

WW Y WW WY YY YW.
Σ Σ Σ Σ Σ−= − .  (2.14) 

Two features of the result in (2.12) deserve attention. First, the conditional mean 

i.e. BP, is here a linear function of Y ; this is actually the regression equation of 

W  in Y . Second, the variance of the conditional distribution does not depend 
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on the specific value of Y y=  used in conditioning, and thus represents the 

expression for the variance of prediction errors.  

These results extend to W  being a vector with a general expected squared loss 

function 1ˆ ˆ( ) ' ( )E W W A W W
− − −  ( A  being any positive definite symmetric 

matrix) as the criterion to be minimized (Goffinet, 1983; Searle et al., 1992). 

The next example will illustrate the previous result regarding the linear form of 

BP which arises not only for continuous variables but also, in some cases, for 

binary ones.  

Example 2.2 Best Prediction when W  and Y  are binary variables 

We are assuming here that W  and Y  are binary variables, the joint distribution 

of which is defined as Pr( ; )ijp W i Y j= = =  for , 0,1i j = , namely 

Table 2.1. Notations for the 2x2 contingency table 

 0Y =  1Y =  

0W =  00p  
01p  

1W =  10p  
11p  

 

Here again, the best prediction ( )ˆ |w E W Y y= =  can be expressed as a linear 

function of y , ŵ y= +α β . This can be shown as follows. As Y  is a binary 

variable, the conditional expectation of W  given Y y=  is simply 

( ) ( ) ( ) ( )| | 1 1 | 0E W Y y yE W Y y E W Y= = = + − =  i.e. 

 ( ) ( ) ( )ˆ | 0 | 1 | 0w E W Y E W Y E W Y y= = + = − =   .  (2.15) 

Now,  

 ( ) ( ) ( )10 00 10
| 0 Pr 1| 0 /E W Y W Y p p p= = = = = +  

 ( ) ( ) ( )11 01 11
| 1 Pr 1| 1 /E W Y W Y p p p= = = = = + , 

so that 

 ( )10 00 10
/p p p= +α , (2.16) 
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( )( )

00 11 10 01

00 10 01 11

p p p p

p p p p

−
=

+ +
β . (2.17) 

Notice that ( )1 Pr 0 | 0W Y− = = =α , and ( )Pr 1| 1W Y+ = = =α β  represent 

respectively what is referred to as negative and positive predictive values of W  

based on Y .  

The next step is to compute the MSE of this predictor i.e., 

( )|
Y

MSE E Var W Y y= =   . Remember, W  being binary, 
2( ) ( )E W E W=  and 

the variance can be obtained as ( ) [ ]( ) 1 ( )Var W E W E W= − . Here, this gives 

 ( )
( )

00 10

2

00 10

| 0
p p

Var W Y
p p

= =
+

,  

 ( )
( )

01 11

2

01 11

| 1
p p

Var W Y
p p

= =
+

. 

Weighing these two terms by ( ) 00 10
Pr 0Y p p= = + , and ( ) 01 11

Pr 1Y p p= = +  

respectively, the expression for the MSE of the predictor can be derived as  

 
2 00 10 01 11

00 10 01 11

ˆ( )
p p p p

E W W
p p p p

 − = +  + +
. (2.18) 

One can also derive the formula for the 2
R . Here, since the predictor is linear, it 

can be established directly as the square of the correlation between W  and Y  

(see exercise 2.1) which yields the following expression 

 
( )

( )( )( )( )

2

2 00 11 10 01

00 01 10 11 00 10 01 11

p p p p
R

p p p p p p p p

−
=

+ + + +
, (2.19) 

Actually, there is a connection between 2
R  and the chi-square since (2.19) 

applied to observed frequencies turns out to be equal to N  (total number of 

observations) times the Pearson chi-square statistics (Fienberg, 1985, page 12).  

These formulae can be applied to the diagnosis of the Clamydia trachomatis 

infection of the cercix based on ligase chain reaction for which the following 

data have been observed (Schachter et al., 1994, table 2), 
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Table 2.2. Absolute frequencies observed in C. Trachomatis 

 0Y =  1Y =  

0W =  1896 84 

1W =  13 139 

 

Assuming relative frequencies equal to probabilities, one obtains 0.0068=α , 

0.6165=β  and 2 0.54R = . The relatively low value of 2
R  is due mainly to a 

poor positive predictive value of the test 0.6233+ =α β  resulting in a high 

proportion of false positives whereas its negative predictive value 1−α  is very 

close to one.  

2.2.2 Best Linear Prediction (BLP) 

As pointed out previously, deriving the BP requires the knowledge of the joint 

distribution of the predictand and observations. We will relax this restrictive 

assumption but we still assume that the first two moments are known.  

Actually we will restrict our attention a priori to a particular class of predictors, 

namely for convenience the linear one of the form ( )0
ˆ ' YW a a Y µ= + −  where 

0
a  and ( )i

aa =  for 1 i N≤ ≤  are the coefficients to be determined.  

In such conditions,  

 ( ) 0
ˆ

W
E W W a− = − µ , ( )ˆ ' 2 '

YY YW WW
Var W W a Σ a a Σ− = − + Σ .  

Letting ( )0
,Q a a  designate the MSE, minimizing it with respect to the unknowns 

0a  and a  involves solving  

 
( )

( )0

0

0

,
2 0

W

Q a
a

a

a∂
= − =

∂
µ , (2.20) 

 
( )

( )0 ,
2 0YY YW

Q a a
Σ a Σ

a

∂
= − =

∂
. (2.21) 

Equation (2.20) leads to 
0 W

a = µ  indicating that the predictor we obtain is 

unbiased. Notice that this is a property of the BLP not an imposed condition. 
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The solutions to (2.21) is 
1

YY YW
a Σ Σ−=  so that eventually the predictor can be 

written as 

 ( )1ˆ
W WY YY YW Σ Σ Y µ

−= + −µ .  (2.22) 

This predictor is the same as BP under normality, but whereas linearity was a 

property of the predictor in the Gaussian case, here this is a pre-assigned feature.  

As for BP, it is easily seen from (2.22) that ˆCov( , ) '
YW

W W a Σ=  is equal to 

( )ˆ '
YY

Var W a Σ a= , so that properties (2.9), (2.10) and (2.11) still hold for BLP in 

(2.22). 

2.2.3 Best Linear Unbiased Prediction (BLUP) 

This type of predictor is now universally known under the acronym of BLUP; it 

was originally proposed by Goldberger (1962) but its main features were 

derived and applications implemented by Charles R. Henderson, his students 

and disciples (DA Harville, RL Quaas, LR Schaeffer) at Cornell University.  

This predictor was developed to extend the prediction of W  based on Y  when 

their first moments are unknown. In fact, Henderson restricted the problem to 

the case of expectations expressed as linear functions of some p -dimensional 

vector β  of unknown coefficients.  

More specifically, it is assumed that '
W

k β=µ  and 
Y
µ Xβ=  where 'k β  is any 

linear estimable function of the parameter vector β . Actually, this is tantamount 

to the problem of prediction within a linear mixed model framework. Data are 

supposed to be generated according to such a mixed model structure 

Y Xβ Ζu e= +++++  where 'V ΖGZ R= +  with ~( , )u 0 G , ~( , )e 0 R , u e⊥ , and the 

predictand is formulated as a linear combination of fixed and random effects, 

say ' 'W k β m u= + .  
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Classical derivation 

We are looking for a predictor Ŵ  which  

 i) belongs a priori to the class of linear predictors,  

 ii) is unbiased in the sense ˆE( ) E( )W W= ,  

 iii) minimises the MSE.  

These three conditions can be expressed as follows 

 i) ˆ 'W a Y= , 

 ii) ' 'a X k 0− = , 

 iii) ( )ˆVar ' ' 2 'W W a Va m Gm a Cm− = + −  minimum,  

where = ( , ')=CovC Y u ZG .  

Identity ii) comes from setting the condition ˆ( ) ( )E W E W= which should be true 

for any β , and iii) from the expression of MSE under the condition of 

unbiasedness.  

Minimizing iii) with respect to a  under the condition ii) is equivalent to 

minimizing the following function  

 ( , ) ' 2 ' 2 '( ' )Q a θ a Va a Cm θ X a k= − + − , (2.23) 

where θ  is a x1)p(((( vector of Lagrange multipliers.  

Differentiation of ( , )Q a θ with respect to a  and θθθθ  gives 

 
( ),

2 2 2
Q a θ

Va Cm Xθ
a

∂
= − +

∂
, (2.24) 

 
( )

( )
,

2 '
Q a θ

X a k
θ

∂
= −

∂
. (2.25) 
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Setting (2.25) to zero leads to ( )1
a V Cm Xθ

−= − , and substituting this value in 

(2.25) gives ( )1'X V Cm Xθ k
− − = . Solving this system in θ  and substituting 

the solution into the expression of a , we obtain ( ) 1' ' ' ' 'a m C θ X V
−= − so that 

( )( )1 1 1 1ˆ ' ' ' ' ' ' ' 'W a Y m C V Y k m C V X X V X X V Y
−− − − −= = + − , 

which, after some rearrangement becomes  

 ˆˆ ˆ' 'W k β m u= ++++ . (2.26) 

In (2.26) β̂  is a GLS solution to the system 

 1 1ˆ' 'X V Xβ X V Y
− −====  (2.27) 

and, û  is the BLUP of u  based on Y given by 

 ( )1 ˆˆ 'u GZ V Y Xβ−= − . (2.28) 

Notice that the BLUP of û  can be obtained in practice as the BLP of u  i.e. 

[ ] [ ]
1

ˆ ( ) ( , ') ( ) E( )BLP E Cov Varu u u Y Y Y Y
−

= + −  in which E( )Y  is replaced by its 

GLS estimator ˆXβ . This result was established independently by Goldberger 

(1962) (page 371, eq 3.13) and Henderson (1963) (page 161, equations 19 and 

20).  

Example 2.3 BLP and BLUP of a random intercept 

These two procedures can be illustrated with the simple random intercept model:  

 ij i ijy a e= + +µ , (2.29) 

where ijy  is the 
thj  record ( )1,...,

i
j n=  on the th

i  experimental unit ( )1,...,i I=  

such as a cluster (e.g. a family) made of several subunits; µ  is the population 

mean; 
i

a  is the true effect of the th
i  experimental unit , and ije  is the random 

error.  
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Since experimental units 1,...,i I=  are supposed to be randomly sampled from a 

population, they are modelled as random variables with expectation zero, 

variance 
2

a
σ  and zero correlation among them i.e. ( )2~ 0,

i iid a
a σ ; similarly, it is 

assumed that ( )2~ 0,
ij iid e

e σ , and in addition, that any 
i

a  is uncorrelated to any 

error term, ( )' ', 0
i i j

Cov a e = , , ', 'i i j∀ .  

We are interested in predicting the 
i

a ’s, and shall first use BP to that respect. 

Notice that the couples ( ),
i i

a y
.  are uncorrelated among them, so that all the 

information about 
i

a  is in the data sample mean ( )1
/

in

i ij ij
y y n. =

= ∑  pertaining to 

the same experimental unit i . Then, the BP of 
i

a  based on 
i

y .
 is given by the 

equation of linear regression of 
i

a  in 
i

y .
 that is, 

 
( )

( )
( , )

ˆ ( ) i i
i i i

i

Cov a y
a E a y

Var y

.
.

.

= + − µ  

Here ( ) 0
i

E a = , ( ) 2,
i i a

Cov a y . = σ  and ( )2 2( ) /
i a e i

Var y n. = +σ σ , so that the BLP 

ˆ
i

a  of 
i

a  is 

 ( )ˆ
i i i

a b y
.

= − µ .  (2.30) 

where ( )2 2 2/
i i a i a e

b n n= +σ σ σ  acts as a skrinkage factor (0 1
i

b≤ ≤ ) of 
i

y . − µ  

towards zero.  

If 
i

n → ∞  or 
2 0
e

→σ , then 1
i

b →  whereas 0
i

b →  when 0
i

n →  or 
2 0
a

→σ .  

The result in (2.30) can also be derived from the general formula of BP given in 

(2.22) as illustrated by exercise (2.2).  

Next, one can obtain the BLUP of 
i

a  from (2.30) by replacing µ  by its GLS 

estimator µ̂  (see exercise 1.13). If one wants to predict a future observation ijy '

which is not recorded, its BLUP is then ( )ˆ ˆ ˆ
ij i i

y b y' .= + −µ µ  which clearly 
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illustrates that this predictor is “shrinking” the least square mean 
i

y .
 of 

i
a+µ  

towards the GLS estimation µ̂  of the population mean µ .  

Bulmer’s derivation 

Bulmer (1980) tackled the prediction of u  not from the data vector Y  which is 

causing the difficulty, but from an counterpart of it 
c

Y  adjusted for fixed effects. 

Technically, one proceeds into two steps: 

 i) adjust Y  for fixed effects via GLS i.e. compute ˆ
c

Y Y Xβ= −  

 ii) predict u  by BLP based on 
c

Y  which is legitimate since both ( )E u  

and ( )E
c

Y  are equal to zero, and so exactly known.  

By definition, such a predictor, say u�  should be of the form 

 [ ]'Cov( , ) Var( )c c cu u Y Y Y
−

=� . (2.31) 

Notice that this expression includes a generalized inverse of Var( )
c

Y  instead of 

a standard inverse since Var( )
c

Y  no longer has rank N  but only rank( )N X− . 

In fact, 
c

Y  can be expressed as  

 
c

Y VPY= , (2.32) 

where P  is defined as ( )1
P V I Q

−= −  and 
1 1( ' ) 'Q X X V X X V− − −=  is the 1

V
−  

orthogonal projector defined in (1.72). Then, V being a g-inverse of P  (see 

exercise 2.3) , 

 Var( )
c

Y VPVPV VPV= = , 

and  

 
'Cov( , ) '
c

u Y C PV= ,  (2.33) 

 ( ) 1
VPV V

− −=  (2.34) 

After substituting, (2.32), (2.33), and (2.34) into (2.31),  
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 ' ' '
c

u C PY C PVPY C PY= = =� , (2.35) 

Since ( )1 ˆPY V y Xβ−= − , it becomes obvious that this predictor is identical to 

the BLUP of u  based on Y  (Gianola and Goffinet, 1982) contrarily to what 

Bulmer (1980) initially thought. In addition, formula (2.35) illustrates the 

property of translation invariance of BLUP (see exercise 2.3).   

This formula is also convenient for deriving the expression of the variance of the 

predictor and that of the error of prediction. Indeed 

 ˆ ˆ( ) ( , ') 'Var Covu u u C PC= = , (2.36) 

and, as û  and û u−  are thus uncorrelated 

 ˆ( ) 'Var u u G C PC− = − . (2.37) 

It is worthwhile mentioning the difference between this expression of the 

variance of prediction error using BLUP and that would apply to BLP  

 
1ˆ( ) '

BLP
Var u u G C V C−− = − . (2.38) 

In (2.37), P  replaces 1
V

− so as to account for the uncertainty due to estimating 

β  by β̂  via GLS instead of assuming β  known. We will find the same 

substitution when passing from maximum likelihood to restricted maximum 

likelihood.  

Formulae (2.27), (2.28) and (2.37) apply directly to the case of the analysis of 

repeated measurements, ( )' ' '

1,..., ,..., '
i I

y y y y=  recorded on independent 

individuals 1,...,i I=  according to the model 
i i i i i

y X β Z u e= + + , where 

( )i ij
yy = , 1

i
j n≤ ≤  represents the data vector for subject i ; 

i
X β  refers to the 

fixed part of the model and 
i i

Z u  to its subject specific random component such 

that  

 
i i i i i

y X β Z u e= + + , (2.39) 
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where ( )0
~ ,

i iid
u 0 G , ( )0,~ ,

i iid i
e 0 R  and 

i i
u e⊥ . For instance, 

i
u  can include an 

intercept and a slope, ( ), '
i i i

a bu =  as in Example 1.6.  

Letting 0, 0i i i i

'
V R Z G Z= + , then the BLUP of 

i
u  is  

 ( )' 1

0
ˆˆ

i i i i iu G Z V y X β−= − , (2.40) 

where β̂  is solution of  

 ( )' 1 ' 1

1 1

ˆI I

i i i i i ii i
X V X β X V y

− −

= =
=∑ ∑ . (2.41) 

The corresponding variance of prediction errors (VPE) is 

 ( ) '

0 0 0
ˆ

i i i i i
Var u u G G Z P Z G− = − , (2.42) 

where  

 ( )1 1 ' 1 ' 1

1

I

i i i i i i i i ii
P V V X X V X X V

−
− − − −

=
= − ∑ .  (2.43) 

Finally, the BLUP ( )*ˆ
i ik

yy =  of a vector of future (new) observations 

* * * *

i i i i i
y X β Z u e= + +  for subject i  with { }1,..., ,...,

i
k j n∉  , can be written as  

 ( )* * * 1

0
ˆ ˆˆ

i i i i i i i

'y X β Z G Z V y X β−= + − , (2.44) 

In the special case where 
*

i i
X X=  and 

*

i i
Z Z=  (e.g. no time dependent 

covariates), formula (2.44) can be alternatively expressed as 

 ( )0 0

* 1 1

, ,
ˆˆ

ii i i i n i i i
y R V X β I R V y− −= + − . (2.45) 

Formulae (2.45) clearly illustrates the James-Stein interpretation of BLUP as a 

simple weighted mean of ˆ
i

X β  and the data vector 
i

y .  

We leave up to the reader to see how to derive (2.45) and the corresponding 

variance of prediction errors ( )* *ˆ
i i

Var y y−  (exercise 2.5) 
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2.3 Mixed model equations 

2.3.1 Henderson’s approach 

One major difficulty in using (2.40) to obtain BLUP lies in computing the 

inverse of the variance covariance matrix of the observations that cannot be 

simplified in complex data structures with V  being large and non block 

diagonal. This led Charles Henderson (1948, 1950, 1952) to propose as an 

alternative a set of equations, known now as Henderson’s mixed model 

equations (HMME), providing both BLUP of random effects and GLS of fixed 

effects, and which are 

 

1 1 1

1 1 1 1

' ' '

' ' '

X R X X R Z X R yβ

Z R X Z R Z G Z R yu

− − −

− − − −

    
=    

+    

�

�
 (2.46). 

Here β�  and u�  are solutions of the equations for fixed β  and random u  effects 

arising in a linear mixed model y Xβ Ζu e= +++++  such that ( )E y Xβ= , 

( ) 'Var y V ΖGZ R= = +  with ~( , )u 0 G , ~( , )e 0 R and ( , ')Cov u e 0= .  

This system does not require inversion of V ; it only requires inversion of R  and 

G  which are often diagonal or block diagonal, or if not have special structure 

making inversion much more easier than that of V . Actually, this system 

mimics the normal equations of least squares except that 1
G

−  is added to the 

block pertaining to random effects.  

2.3.2 Justification 

Henderson derived these equations by maximizing the joint density ( , )f y u  of 

the data and random effects with respect to β and u  under the normality 

assumption (Henderson et al., 1959; Henderson, 1973), 

 
,

, arg max log ( , )f
u

β u y u=� �
ββββ

.  (2.47) 

As ( , ) ( ) ( )f f fy u y u u=  where ~ ( , )y u Xβ Ζu R++++N  and ~ ( , )u 0 GN , one has 

 12log ( ) log 2 log ( ) ' ( )f Ny u R y X Ζu R y Xβ Ζu
−− = + + − −π β − −β − −β − −β − −  
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 12log ( ) log 2 log 'f qu G u G u
−− = + +π . 

Maximizing ( ; ) log ( , )l y fβ u y u=,,,, is equivalent to minimizing the sum of these 

two terms. Differentiating this sum with respect to β and u , 

 
[ ] 12 ( ;

2 ' ( )
l yβ u

X R y Xβ Ζu
β

−∂ −
= − −

∂

,,,,
−−−−  

 
[ ] 1 12 ( ;

2 ' ( ) 2
l yβ u

Z R y Xβ Ζu G u
u

− −∂ −
= − − +

∂

,,,,
−−−− , 

and equating them to zero gives the following system 

 
1 1 1' ' 'X R Xβ X R Zu X R y− − −+ =� � , (2.48) 

 ( )1 1 1 1' ' 'Z R Xβ Z R Z G u Z R y
− − − −+ + =� � , (2.49) 

that coincides precisely with HMME.  

However, one will observe that neither ( ; )l yβ u,,,,  is the formal expression of the 

likelihood function of the data, nor u  is a parameter so that Henderson’s 

derivation of the MME has been perceived for a long time as strange if not 

dubious.  

Happily, as will be seen later on, this maximization can be perfectly justified 

within a Bayesian framework (see section 2.3.4 and exercise 2.10). But before 

that, what can be done is to show that the solutions to HMME in β�  and u�  

coincide with their β̂  GLS and û  BLUP counterparts respectively.  

The first equation can be rewritten as ( )1 1' 'X R Xβ X R y Ζu
− −=� �−−−− . Similarly for 

the second: ( ) ( )1 1 1' 'Z R Z G u Z R y Xβ
− − −+ = �� −−−− . Substituting the expression of u�  

from this last equation into the first one leads to 

 ' 'X WXβ X Wy=� , (2.50) 
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where 

 ( )
1

1 1 1 1 1' 'W R R Z Z R Z G Z R
−− − − − −= − + . (2.51) 

Now, it can be shown (see appendix 2.5) that: 

 ( )
1 1'W Z GZ R V

− −= + = ,  (2.52) 

so that β�  is a GLS solution for β .  

Rewriting equation (2.49) as 

 ( ) ( )
1

1 1 1 ˆ' 'u Z R Z G Z R y Xβ
−

− − −= +� −−−− , (2.53) 

and, using in (2.53) the identity derived in the appendix i.e. 

 ( )
1

1 1 1 1' ' 'Z R Z G Z R GZ V
−− − − −+ = , (2.54) 

one proves that u�  of (2.57) is eventually the BLUP of u .  

 

2.3.3 Sampling and prediction error variances 

We are concerned here with the sampling variances of estimable 'k β  of fixed 

effects as well as variances of prediction errors û u−  of random effects. 

Let C  be an inverse of the coefficient matrix of HMME,  

 

1
1 1

1 1 1

' '

' '

u

u uu

C C X R X X R Z

C C Z R X Z R Z G

−
− −

− − −

   
=   

+  

ββ β

β

 (2.55) 

For the sake of simplicity, the coefficient matrix is supposed here to be full rank 

so that C  is a regular inverse, but results obtained apply as well to any 

generalized inverse.  

It will be shown that all expressions for accuracy of fixed effects and BLUP can 

be obtained directly from the HMME as follows (Henderson, 1973) 
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 ˆ( ' ) 'Var k β k C k= ββ , (2.56) 

 ˆ ˆ( ' ')Cov k β u 0=,,,, , (2.57) 

 ( )ˆ ˆ' ' '
u

Cov k β u u k C − =  β,,,, , (2.58) 

 ( )ˆ
uu

Var u G C= − . (2.59) 

 ( )ˆ
uu

Var u u C− = . (2.60) 

Proof 

Formula (2.56) comes directly from the expression of the inverse of a 

partitioned matrix. In fact, from (2.55), 

 ( )
1

1
1 1 1 1 1' ' ' 'C X R X X R Z Z R Z G Z R X

−−− − − − − = − +  ββ   

which, according to (2.51) and (2.52) reduces to ( )
1

1'C X V X
−−=ββ , QED.  

Formula (2.57) is a consequence of the orthogonality of Q  and Q−ΙΙΙΙ . 'k β  

being an estimable function, it can be expressed as a linear combination of the 

data expectation i.e., ' 'k β λ Xβ====  for some λ , so that ˆ ˆ' ' 'k β λ Xβ λ Qy= == == == = . In 

addition, as shown in (2.35), ˆ 'u C Py= ; then ˆ ˆ( ' ') 'Cov k β u QVPC=, λ, λ, λ, λ . Now 

1( )QVP QV V I Q
− = −   which is equal to zero since Q  and Q−ΙΙΙΙ  are 

orthogonal, and ˆ ˆ( ' ')Cov k β u 0=,,,, , QED.  

Given (2.57), formula (2.58) is equivalent to ( )ˆ' ' ' uCov k β u k C= − β,,,, . By 

definition of HMME, û  can be formulated as ( ) 1
'

'
'

u

X
k C C R y

Z

− 
 
 

ββ β  so that  

 ( ) ( )
1

1

'ˆ' ' '
'

uCov
X R Z

k β u k C C G
Z R Z

−

−

 
=  

 
ββ β,,,, . 
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By definition of C , one has ( )
1

1 1

'

'
u

X R Z
C C 0

Z R Z G

−

− −

 
= 

+ 
ββ β . Hence 

( ) 1ˆ' ' ' uCov k β u k C G G−= − β,,,,  which completes the proof.  

If û  is BLUP of u , it follows that ˆ ˆ( ) ( , ')Var Covu u u= (see (2.36)). One can 

write û  as previously from HMME, ( ) 1
'

ˆ
'

u uu

X
u C C R y

Z

− 
=  

 
β , and 

consequently ( ) ( )
1

1

'
ˆ '

'
u uuCov

X R Z
u u C C G

Z R Z

−

−

 
=  

 
β,,,, , which, on account of the 

property of C  being an inverse of the coefficient matrix, is also equal to 

( )1

uu
I C G G

−− , QED. Formula (2.60) results from (2.59) and the fact that 

( )Var u  is the sum of ˆ( )Var u  and ˆ( )Var u u− .  

Finally, if interest is on a linear combination of fixed and random effects, 

' 'W k β m u= + , its variance of prediction errors is obtained as 

 ( )ˆ ' ' 2 '
uu u

Var W W k C k m C m k C m− = + −ββ β . (2.61) 

Example 2.4. Prediction in a two-way additive mixed model  

We are concerned here by cross-classified designs involving two factors, say A 

and B, and response data ijky  which can be presented as a tabular layout with the 

levels of one factor (say A) being rows, and the levels of the other (say B) being 

columns, each elementary combination ij  having ijn  observations. Examples of 

such designs are: 

 -in agriculture: yield per ha according to variety of plant (A) in 

different fields (B); 

 -in breeding and genetics: milk production per lactation of cows raised 

in different herds and/or environmental conditions (A) and sired by different 

bulls (B); 
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 -in management: mileage per gallon or litres per 100km according to 

car type (A) with different drivers (B); 

 -in clinical trials: health status of patients according to treatment or 

medication (A) in different hospitals (B); 

Such designs can be analyzed under three different situations: i) both factors as 

fixed (see exercise 1.4) , ii) both factors as random, and iii) one factor fixed and 

the other random.  

Here we will concentrate on the last situation. This means that effects of the 

random factor (B in our convention) are assumed to be sampled from a 

conceptual population of effects according to some randomization process. For 

instance, in the agriculture example, specific varieties are compared when grown 

on fields randomly drawn from a collection of fields having some specified 

characteristics (size, soil, etc…). Similarly, we will consider in breeding a 

random sample of bulls out of a given population (breed, country, age,…) with 

daughters raised in specific herds. The same reasoning will apply to a random 

sample of workers, drivers and hospitals.  

Finally, for the sake of simplicity, we will assume that the effects of factors A 

and B are additive so that the model is written as: 

 ijk i j ijky a b e= + + +µ , (2.62) 

where ijky  is the th
k response ( 1,..., ijk n= ) obtained in the ij  combination of the 

levels of factors A and B ; µ  is the overall mean; 
i

a  is the fixed effect of the th
i  

level of factor A ( 1,...,i I= ); jb  is the random effect of the 
thj  level of factor B (

1,...,j J= ); ijke  is the residual term.  

Classical assumptions are made about the distribution of random effects of this 

model, viz. ( )2~ 0,
j iid b

b σN , ( )2~ 0,
ijk iid e

e σN , and j ijkb e⊥ , i∀ , j∀ , k∀ .  
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Suppose that at this stage, the interest is predicting the jb  values by BLUP. 

Here, 
2

e N
R I= σ  with 

ijij
N n=∑ , and 2

b q
G I= σ  so that we can multiply both 

sides of HMME by 
2

e
σ  to form the following system 

 
ˆ' ' '

' ' 'ˆq

X X X Z X yβ

Z X Z Z I Z yu

    
=    +    λ

, (2.63) 

where 
2 2/
e b

=λ σ σ . 

In the case of model (2.62), this gives 

 

100

00

10

0

01 010

0 0 0

111 11

1

11 1 1

11

ˆ ˆ0

ˆ ˆ0

ˆ0

ˆ0

ii i ij i

i

ij j jj

an n n y

an n n y

n n n b y

n n n yb

+    
    +    =    +
        +    

µ

µ

λ

λ

 (2.64) 

where 
0 1

J

i ijj
n n

=
=∑ , 

0 1

I

j iji
n n

=
=∑ , 

00 1 1

ijJ n

i ijkj k
y y

= =
=∑ ∑ , 

0 0 1 1

ijI n

j ijki k
y y

= =
=∑ ∑ .  

In some instances ( I  very large), one can calculate the ˆ
j

b ’s from a reduced 

system after eliminating the ˆ ˆ
i

a+µ ’s unknowns (process sometimes known as 

absorption). Then, starting from (2.63), the system becomes 

 ( ) ˆ' '
q

Z MZ I u Z My+ =λ , (2.65) 

where 
N

M I P= −  with ( )'P X X X X
−

=  being the projector of y  onto the 

subspace generated by the columns of X  (see 1.16). In the case of (2.64), one 

gets 

 ( ) 0 0

2

1
' /

I

j ij ijj i
n n nZ MZ

=
= −∑ , (2.66) 

 ( ) 0'' 1
' /

I

ij ij ijj i
n n nZ MZ

=
= −∑  for 'j j≠ , (2.67) 

 ( ) 0 0 00 01
' /

I

j ij i ij i
y n y nZ My

=
= −∑ . (2.68) 
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This system can be solved either by direct inversion of the coefficient matrix, or 

if J  is very large, by specialized algorithms e.g., Gauss-Seidel or Jacobi. It is 

worth noticing that the coefficient matrix ' qZ MZ I+ λ  is always full rank 

provided 0>λ , In practice, this means that HMME always have some solution 

in û  regardless of the structure of data. In addition, these solutions verify the 

identity ˆ' 01 u =  (see exercise 2.7) 

This can be illustrated numerically by the data set shown in table 2.3 involving 

birth weight of the progeny of three sires (1, 2, 3) born out of heifers (A1) or 

mature cows (A2).  

Table 2.3. Distribution of progeny according to sire and age of cows 

Sire A1 A2 

n  y∑  n  y∑  

1 10 440 80 3880 

2 4 175 16 720 

3 40 1730   

 

Assuming that 15=λ , Henderson’s mixed model equations are 

 

1

2

1

2

3

ˆ ˆ54 0 10 4 40 2345
ˆ ˆ0 96 80 16 0 4600

ˆ10 80 105 0 0 4320

ˆ4 16 0 35 0 895

40 0 0 0 55 1730ˆ

a

a

b

b

b

+    
    +    
    =
    
    
         

µ

µ

, 

where µ  is the general mean, 
1a  (

2a ) is the effect of heifer (mature) calving, 

and 
1b , 

2b  and 
3b  are the sire effects. This system has the following solutions: 

1
ˆ ˆ 43.625a+ =µ , 

2
ˆ ˆ 47.204a+ =µ  ; 1

ˆ 1.048b = , 2
ˆ 0.964b = −  and 3

ˆ 0.084b = − . 

Under its reduced form, the system is 
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1

2

3

ˆ
36.4815 14.0741 7.4074 52.4074

ˆ14.0741 32.0370 2.9630 45.3704

ˆ7.4074 2.9630 25.3704 7.0370

b

b

b

 − −       
− − = −        − − −     

 

with the same sire solutions the sum of which is zero.  

One might be intererested in what is going on if the data structure is slightly 

modified (see exercise 2.7).  

2.3.4 Bayesian interpretation 

Numerous studies have shown the links between BLUP theory and Bayesian 

statistics (Dempfle, 1977; Lefort, 1980, Gianola & Fernando, 1986). Bayesian 

analysis of linear models dates back to the seminal paper by Lindley and Smith 

(1972) based on a hierarchical Gaussian model with two levels and briefly 

summarized below (see sections 1.6.2 and 1.6.3 for more details) 

 i) ( )| , ~ ,y θ R Tθ RN , (2.69) 

 ii) ( )0
| , ~ ,θ α Ω θ ΩN . (2.70) 

The first level (2.69) describes the sampling distribution of data given the 

location θ  and dispersion R  parameters, whereas the second one (2.70) 

specifies the prior distribution of θ . 

According to Bayes’ theorem, the posterior density is proportional to the product 

of the conditional density of the data in i) and of the prior in ii). Since these two 

are assumed to be normal, the posterior belongs to the same family as the prior 

(known as “conjugacy” property), so that 

 ( ) ( )| exp / 2f Qθ y ∝ −  (2.71) 

the kernel Q  being simply the sum of the kernels of i) and ii), namely 

 ( ) ( ) ( ) ( )1 1

0 0' 'Q y Tθ R y Tθ θ θ Ω θ θ
− −= − − + − − . (2.72) 
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Let θ̂  be the solution to the following system of equations   

 ( )1 1 1 1

0
ˆ' 'T R T Ω θ T R y Ω θ

− − − −+ = + , (2.73) 

the expression of Q  can be rearranged (see exercise 2.8) as to contain a 

quadratic in ˆθ θ−  viz. 

 
( ) ( )( )

( )

1 1 1

1 1 1

0 0 0

ˆ ˆ' ' '

ˆ ' '

Q

'

θ - θ T R T Ω θ -θ y R y

θ T R y Ω θ θ Ω θ

− − −

− − −

= + +

− + +
. (2.74) 

The first term in (2.74) only is needed for the expression of the density of the 

posterior distribution, the rest contributing to the integration constant. This first 

term can be easily identified as a Gaussian kernel so that the posterior 

distribution is a normal one  

 ( )ˆ~θ | y θ C, , , , N , (2.75) 

with expectation θ̂  solution to the system (2.73) and variance covariance matrix 

( )
1

1 1'C T R T Ω
−− −= +  being the inverse of the coefficient matrix of the same 

system (see exercise 2.9 for another interpretation of θ̂ ).  

At this point, we can make the connection between this hierarchical Bayes 

approach and mixed model methodology by defining ( )', ' 'θ β u=  and ( ),T X Z=

. In hierarchical modelling, no distinction is made between fixed and random 

effects so that we shall assume that each component vector has a Gaussian prior 

distribution i.e., ( )0
~ ,β β BN  and ( )0

~ ,u u GN  with the two components 

being independent. Then, 
1

1

1

B 0
Ω

0 G

−
−

−

 
=  
 

, 
0

0

0

β
θ

u

 
=  
 

, and the system in 

(2.76) becomes 

 

1 11 1 1

0

1 11 1 1

0

ˆ '' '

'' ' ˆ

X R y B βX R X B X R Z β

Z R y G uZ R X Z R Z G u

− −− − −

− −− − −

     ++
=    

++    
.(2.76) 
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Moreover, on account of (2.78), we can exactly specify the posterior densities of 

the marginal distributions of β  and u  as 

 ( )ˆ, ~elseβ | y β Cββ, , , , N , (2.77) 

 ( )ˆ, ~
uu

elseu | y u C, , , , N , (2.78) 

where Cββ  and 
uu

C  are the diagonal blocks pertaining to β  and u  in the inverse 

of the coefficient matrix in (2.79). “else” standing for all parameters (
0β ,

0u ,B ,

G , R ) involved in the conditional distributions. 

In a Bayesian setting of mixed models, the distinction between fixed and 

random effects will be accomplished by specifying 1
B 0

− →  and 
0u 0= . The 

last condition conveys the property of random effects being usually viewed in 

mixed linear models as centered random variables. Equating 1B−  to zero is 

equivalent to setting a prior distribution for β  with infinite variance so as to 

make this prior close to an uniform one and thus, non informative in some sense. 

By doing this in (2.76) and assuming in addition that X  is full column rank, β̂  

becomes the GLS estimator of β  which can be alternatively interpreted as the 

expectation of the posterior distribution of β  given G  and R . This allows to 

parallel the presentation of the GLS estimator of fixed effects in classical 

statistics ( )ˆ ~ ,β β CββN  versus its Bayesian counterpart ( )ˆ, , ~β | y G R β Cββ, , , , N  

whereCββ  corresponds to Cββ  for 1
B 0

− →  and 
0u 0= .  

Similarly, BLUP of u  turns out to be the expectation of the posterior 

distribution of u  given G  and R , and the variance of this distribution 
uu

C  is 

equivalent to the variance of prediction errors under the normality assumption 

 ( )ˆ | , ,
BLUP

Eu u y G R= , (2.79) 

 ˆ( ) ( | , , )
BLUP

Var Varu u u y G R− = . (2.80) 
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In addition, the Bayesian hierarchical modelling helps to understand 

Henderson’s original justification of the mixed model equations in terms of a 

Bayesian-type approach (see exercise 2.10). Actually, maximizing the logarithm 

of ( ), |f y u β  with respect to β  and u  as done by Henderson is equivalent under 

normality to seeking the first moments of the posterior distribution ( , | )f β u y . 

2.4 Discussion-Conclusion 

This presentation has provided us with a rigorous conceptual framework for 

dealing with the problem of prediction. There are different types of prediction 

according to assumptions made on the joint distribution of the predictand (W ) 

and the observations ( Y ).  

The expectation of the conditional distribution of W  given Y y=  turns out to be 

the best predictor with respect to minimizing the mean square error of 

predictions, the expression of which reduces to the equation of linear regression 

of W  into y  under normality.  

When the first moment of W  and Y  depend on unknown parameters as happens 

in mixed linear models, the best predictor among the class of linear and unbiased 

predictors is BLUP. This predictor can be obtained via Henderson’s mixed 

model equations. The ease of implementation of such equations has allowed the 

application of BLUP to a vast domain of models, disciplines and situations, 

especially to large data sets with unbalanced structures (Robinson, 1991). On the 

other hand, the Bayesian interpretation of HMME gives a broader scope to the 

theory of BLUP so that this system of equations has become the cornerstone of 

today mixed model methodology as we shall see it again later on.  

In particular, one is naturally interested in predictions of linear combinations of 

fixed and random effects, say ' 'W k β m u= +  taking into account that the 

variance covariance matrices G  and R  are unknown. The classical theory 

answers this problem in two steps: i) derive BLUP of W  as if G  and R  (or the 
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parameters γ  they are depending of) were known, and ii) estimate γ  according 

to some relevant statistical procedures (e.g. Maximum Likelihood) from the data 

and replace G  and R  in the BLUP or HMME equations by their estimates 

( )ˆG γ  and ( )ˆR γ . The methods for estimating the γ  parameters will be 

presented in the next two chapters. This procedure involving a plugin stage with 

parameters replaced by their estimates typically reflects what it is called an 

Empirical Bayes (EB) approach. We will see later on in the section on stochastic 

tools how to solve the problem of predicting W  via a completely Bayesian 

setting with prior information on γ .  
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2.5 Appendix 

Inversion of V  

Consider the following partition into blocks of a square matrix and its inverse 

 

1 11 12
11 12

21 22
21 22

A A A A

A A A A

−
  

=   
   

 (2.81) 

where 
11A  et 

22A are also square and non singular.  

The proof proposed is based on the well known following results on the inverse 

of partitioned matrices: see e.g., Searle, (1966) pages 210-211 

 ( )
1

11 1 1 1 22 1

11 12 22 21 11 11 12 21 11A A A A A A A A A A A
−− − − −= − = + , (2.82) 

 
12 1 22 11 1

11 12 12 22
A A A A A A A− −= − = − . (2.83) 

Similarly for 22A  and 21A . 

Now let us define: 

 
1 1

11 12

1 1 1
21 22 ' '

A A R R Z

A A Z R Z R Z G

− −

− − −

  
=   

+   
. (2.84) 

By applying the first part of (2.82) to 22A , one has 

 ( ) ( )
1 1

22 1 1 1 1 1

22 21 11 12 ' 'A A A A A Z R Z G Z R RR Z G
− −− − − − −= − = + − =  

Similarly for 11A  

 ( )
1

1
11 1 1 1 1 1 1' 'A R R Z Z R Z G Z R W

−
−

− − − − − − = − + =  
.  (2.85) 

Then, the application of the second result of (2.82) gives: 

 11 1 1' 'A R RR ZGZ R R R ZGZ V
− −= + = + = , (2.86) 

QED.  
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We can do the same for 12A  using (2.83) 

 
12 1 22 1

11 12
A A A A RR ZG ZG− −= − = − = −  

 ( )
1

12 11 1 1 1 1

12 22 'A A A A VR Z Z R Z G
−− − − −= − = − +  

Equating these two terms yields:  

 ( )
1

1 1 1 1' ' 'GZ V Z R Z G Z R
−− − − −= + , (2.87) 

proving the equivalence between the BLUP û  of u  and HMME. 

2.6 Exercises 

2.1 In Example 2.1,  

 1) derive the analytical expressions of ( )Var W , ( )Var Y  and 

( ),Cov W Y  and then 2R  the square of the correlation coefficient between W  

and Y ; 

 2) apply these formulae to the data in table 2.2 for computing α , β  

and 2R .  

 

2.2 Derive formula ( )ˆ
i i i

a b y
.

= − µ  in (2.30) using the general BLP theory of 

vector ( )i
aa = , 1 i I≤ ≤  based on the data vector ( )1,..., ,..., '

i I

' ' '
y y y y=  where 

( )i ij
yy = , 1

i
j n≤ ≤ .  

Hint: write 
i

V , the variance of 
i

y  under the form 
i ii n na bV I J= + .  

 

2.3. Show that V  is a g-inverse of 
1 1 1 1( ' ) 'P V V X X V X X V− − − − −= − . Deduce 

from this that the BLUP of ' 'w k β m u= +  based on y Xβ Ζu e= +++++  such that 
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( )E y Xβ= , ( ) 'Var y V ΖGZ R= = +  is translation invariant with respect to fixed 

effects β  

 

2.4 Consider longitudinal binary data 0 , 1ijy =  made of repeated measurements 

( )1,...,
i

j n=  recorded on different individuals ( )1,...,i I= . The statistical 

analysis is carried out according to the following hierarchical model:  

 a) ( )| ~ 1,
ij i id i

y Bπ π  are conditionally independent rv’s having 

Bernouilli distributions with parameter 
i

π  ; 

 b) ( )~ ,
i iid

π π ρL  are independent continuous rv defined on ( )0,1 with 

mean π  and variance ( )1−ρπ π .  

 1) Show that ( )ijE y = π . In the same way, express ( )ijVar y and 

'( , )ij ijCov y y for 'j j≠  as a function of π  and ρ .  

 2) From these, derive the expression of ( )
i

Var y .
 where 

( )1
/

in

i ij ij
y y n. =

= ∑  as a function of π , ρ  and 
i

n  . 

 3) Show that ( )( , ) 1
i i

Cov y
.

= −π ρπ π . 

 4) Assuming that π , ρ  are known, derive the BLP ˆ
i

π  of 
i

π  based on 

i
y . . Show that this predictor can be written as ( )ˆ

i i i
b y

.
= + −π π π  where 

i
b  is a 

function of ρ  and 
i

n .  

 5) Compute the values of this predictor for the following data assuming 

0.15=π  and 1 /11=ρ . 

i  i
n  

1

in

ijj
y

=∑  

1 90 15 

2 20 4 

3 5 1 

 

Hint for 1): One may take advantage of the following identities:  
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( ) ( | )
X

E Y E Y X x= = , 

[ ] [ ]( ) E( | ) Var( | )
X X

Var Y Var Y X x E Y X x= = + = , 

[ ] [ ]( , ) ( | ), ( | ) ( , | )
X X

Cov Y Z Cov E Y X x E Z X x E Cov Y Z X x= = = + = . 

2.5 Show that the BLUP ( )* *ˆ
i ik

yy =  of new observations 
* * * *

i i i i i
y X β Z u e= + +  

based on already observed data ( )i ij
yy = , 1

i
j n≤ ≤  can be expressed as 

( )0 0

* 1 1

, ,
ˆˆ

ii i i i n i i i
y R V X β I R V y− −= + −  if 

*

i i
X X=  and 

*

i i
Z Z=  (see Formula (2.45)) 

and express the corresponding variance of prediction errors ( )* *ˆ
i i

Var y y− .  

 

2.6 Consider the linear mixed model y Xβ Zu e= + +  such that  

 E

y Xβ

u 0

e 0

   
   

=   
   
   

 and 

'

'

uu uu

uu uuVar

y ZG Z ZG R

u G Z G 0

e R 0 R

   
   

=   
   
   

. 

 

 1) Let û  be the BLUP of u  based on y . Show that û  is translation 

invariant with respect to fixed effects β . 

 2) We want to predict the vector v  that does not occur directly in the 

model for y  but that is correlated to y  via u  as shown below 

 ( )E v 0=  and 
11 12

21 22

Var
G Gu

G Gv

  
=   

   
.  

Show that the BLUP v̂  of v  based on y  can be expressed as 
1

21 11
ˆ ˆv G G u−= . It is 

assumed that Cov( , ')v e 0= .  

 3) Write the following system 

 

1 1 1

1 1 11 12 1

21 22

ˆ' ' '

ˆ' ' '

ˆ

X R X X R Z 0 β X R y

Z R X Z R Z G G u Z R y

0 G G v 0

− − −

− − −

    
    

+ =    
    

    
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where 

111 12
11 12

21 22
21 22

G GG G

G GG G

−
   

=   
  

. 

Show that its solution in v̂  gives the same results as in (2). 

 

2.7 Consider the linear mixed model y Xβ Zu e= + +  such that ( )E y Xβ=  and 

2 2( ) '
u e

Var y ZZ= +σ σ  

 1) Show that, in the case of a two way cross-classification analyzed by 

an additive mixed model (2.62), the reduced system ( ) ˆ' '
q

Z MZ I u Z My+ =λ  in 

(2.65) has elements defined in (2.66) (2.67) and (2.68)  

 2) Prove that ˆ' 01 u = . 

 3) Compute û  from the data set of table 2.3 assuming that heifer (A2) 

progeny out of sire 1 are missing (take 15=λ ).  

 

Sires A1 A2 

n  y∑  n  y∑  

1 10 440   

2 4 175 16 720 

3 40 1730   

 4) Same question as in 3) but assuming that sires 1, 2 and 3 have 

progeny only out of heifers (A1).  

 5) Compare the results obtained in 3) and 4). How would you explain 

that?  
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2.8 Show that ( ) ( ) ( ) ( ) ( )1 1

0 0' 'Q θ y Tθ R y Tθ θ θ Ω θ θ
− −= − − + − −  in (2.72) can 

be written as ( ) ( ) ( )( )1 1ˆ ˆ' 'Q Cstθ θ - θ T R T Ω θ - θ− −= + +  where θ̂  is the solution 

to the system ( )1 1 1 1

0
ˆ' 'T R T Ω θ T R y Ω θ

− − − −+ = + .  

 

2.9. Show that the solution to (2.73) i.e. ( )1 1 1 1

0
ˆ' 'T R T Ω θ T R y Ω θ

− − − −+ = +  can 

be derived as a weighted mean of two « natural » estimators of θ  viz. 

 i) the GLS estimator ( )
1

1 1

1
ˆ ' 'θ T R T T R y

−− −=  

 ii) the « prior » estimator 2 0θ̂ θ=  

where weights are equal to their accuracies (inverse variances).  

 

2.10 Show that Henderson’s derivation of the Mixed Model Equations via 

maximizing the joint density ( ),f y u  with respect to β  and u  under the 

normality assumption can be interpreted as a Bayesian procedure?  
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3 

Maximum likelihood procedures 

 

 

 

 

 

 

 

3.1 Introduction 

Maximum likelihood (later on abbreviated as ML) is a general procedure due to 

Fisher (1922, 1925) which has interesting statistical properties chiefly in 

asymptotic conditions (Cox and Hinkley, 1974). As far as variances are 

concerned, this procedure was used by Crump (1947) in simple cases (one-way 

classification, balanced designs). But, Hartley and Rao (1967) were the first who 

formalized the general ML approach for the estimation of variance components 

for the linear mixed model. This publication marks a break with the quadratic 

estimator era which began with the work of Fisher on the intra-class correlation 

and reached its summit with Henderson’s I, II and III methods (1953). These 

methods were conceived as an extension to unbalanced data of ANOVA 

procedures designed either for balanced or unbalanced data. They are based on 

quadratic forms obtained mostly under fixed models and are derived on the sole 

property of being unbiased under the true mixed model without any optimality 

consideration in the choice of these quadratic forms. Therefore, for most 

statisticians, they just have a historical interest although they are relatively easy 

to compute and they have been shown to be quite efficient in simulation studies. 

In addition, they return minimum variance (MINVAR) and REML estimators 

for balanced data under the normality assumption. This is why a brief but 
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general description of the most sophisticated version of them (Method III) is 

provided in Appendix 3.1 with an application to the mixed model for the two-

way crossed classification with interaction.  

Similarly, Rao’s (1971ab) and Lamotte’s (1973) methods just appear today as a 

transition between Henderson’s and ML procedures since MINQUE (“minimum 

norm quadratic unbiased estimation) when iterated, results in a maximum 

likelihood estimator (REML under normality as defined below).  

To that respect, two approaches of maximum likelihood must be distinguished. 

The first one, known as ML, relies on the standard concept of likelihood as a 

function of all parameters involved in the data distribution. The second one was 

introduced and developed by Patterson and Thompson (1971) for the Gaussian 

linear mixed model applied to interblock variation. It utilizes linear 

combinations of data, the so-called error contrasts in Harville’s (1977) 

terminology; these are free of fixed effects and the likelihood function so 

obtained yields after maximization what is called “residual or restricted 

maximum likelihood” (acronym REML). In addition, this residual likelihood has 

a Bayesian interpretation (Harville, 1974) as a marginalized likelihood after 

integration of fixed effects assuming a uniform prior distribution on them.  

Both ML and REML have received considerable practical interest over the last 

twenty years. This is due primarily to their growing numerical feasibility 

through more and more efficient computers, software and algorithms. The 

objectives of this chapter are to provide the reader with the basic theoretical 

foundations and derivations underlying these two procedures. We will first 

review (section 3.2) the basic theory of maximum likelihood including models, 

derivation of ML estimators, variants, numerical aspects and hypothesis testing 

of fixed effects. In a second section (3.3), we will deal with REML both from 

classical and Bayesian points of view and discuss the repercussions of using 

REML instead of ML on procedures for testing fixed and random effects.  
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3.2 Basic theory of maximum likelihood 

3.2.1 Models and notations 

Here, for convenience reasons, we will follow Henderson’s notations as they are 

now adopted in major textbooks (see e.g., Searle et al., 1992) and software 

(SAS-Proc Mixed, ASREML). The linear mixed model we are dealing with, is 

written under its generic form as 

 y Xβ Ζu e= +++++  (3.1) 

where y  is the ( )x1N  vector of observations ; X  is the ( )xN p  matrix of 

explanatory variables with the corresponding vector 
pRβ∈  of coefficients or 

« fixed effects » ; u  is the ( )x1q  vector of structural random variables or 

« random effects » with their corresponding incidence ( )xN q  matrix Z ,and e  

is the ( )x1N vector of residual random variables. 

This model is characterized by its mean and variance 

 E( )y µ Xβ= =  (3.2) 

 Var( ) 'y V ΖGZ R= = +  (3.3) 

where ~( , )u 0 G , ~( , )e 0 R , and ( )Cov , ' =u e 0 . 

This general expression can encompass most of the particular situations 

encountered in practice, notably that of an ANOVA type model with several 

independent random factors of variation 1,...,k K=  as considered e.g. in 

Henderson’s methods.  

 
1

K

k kk
y Xβ Ζ u e

=
= +∑++++ . (3.4) 

Assuming ( )2
~ ,

kk k qu 0 σ ΙΙΙΙ , ( )2

0~ ,
N

e 0 σ ΙΙΙΙ , 
k

u e⊥ , k∀  , and in the case of 

uncorrelated random effects 
k l

u u⊥  for k l≠ , the variance covariance matrix V  

takes the linear form 
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 2 ' 2

01

K

k k k Nk
V Ζ Z I

=
= +∑ σ σ , (3.5) 

where the parameters 
2

0
σ ,

2

1
σ ,…,

2

k
σ , …,

2

K
σ  are the so called variance 

components.  

3.2.2 Derivation of ML 

Likelihood function 

Let us first consider the case of a general Gaussian linear model written as 

 ~ ( , )y Xβ VN  (3.6) 

where E( )y Xβ=  as in (4.1) and ( )V V γ=  is a ( )xN N  symmetric positive 

definite matrix depending on a parameter γ∈Γ . 

Under (3.6), the density of observations is 

 ( ) ( ) ( )
1/2/2 11

p ( , ) 2 exp '
2

N

Y
y β γ V y Xβ V y Xβ

−− − 
= − − −  

π . (3.7) 

Its logarithm ( )L ; logp ( )
Y

β,γ y y β,γ= viewed as a function of β  and γ  for a 

given data sample y  is called the log-likelihood which under its 2L−  form is 

expressed as 

 ( ) ( ) ( ) ( )12L ; log 2 ln 'Nβ,γ y V y Xβ V y Xβ
−− = + + − −π . (3.8) 

Maximization 

i) first derivatives 

Searching for points ( )', ' 'α β γ=  which maximize ( )L ;β,γ y  (or alternatively 

minimize ( )2L ;β,γ y− ) i.e. 

 
A

ˆ arg max L( ; )y∈= ααααα αα αα αα α  

is usually carried out by setting the first derivatives to zero. Such a procedure 

has to be applied with much care. First, one has to check that the points so 

obtained are inside the parameter space xp
A = Γ�
R . Second, one has to verify 

that at those points, the matrix of second derivatives ( )2 L / '∂ ∂ ∂α α αα α αα α αα α α  is negative 

definite. Regarding the parameter space, the condition on β  does not raise any 
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difficulty. On the contrary, as far as γ  is concerned, its parameter space Γ  must 

be specified in detail for each model. For instance, in a linear mixed model with 

K  independent random factors as in (4.4), one will impose 
2

0
0>σ  and 

2 0
k

≥σ , 

{ }1,...,k K∀ ∈ . Obviously, these restrictions are more severe than that requiring 

V  positive-definite.  

The property of negativity of the matrix of second derivatives at the points 

zeroing the first derivatives and that are at the interior points of the parameter 

space provides a necessary condition for the existence of a maximum, but this 

one may not be global. It might be difficult to identify all such local maxima and 

then to evaluate the value of the log-likelihood function at these points as well as 

on the border of the parameter space. In the latter case, this may require special 

procedures of maximization under constraints. Things become much easier 

when L  is a concave function of the parameters since then first-order conditions 

guarantee the existence of a global maximum.  

The first derivatives of 2L−  with respect to the parameters are 

 
1( 2L)

2 ' ( )X V y Xβ
β

−∂ −
= − −

∂
 (3.9) 

 
1log( 2L)

( ) ' ( )
k k k

V V
y Xβ y Xβ

−∂∂ − ∂
= + − −

∂ ∂ ∂γ γ γ
. (3.10) 

Now, from standard results in differentiation of matrix expressions (see e.g., 

Searle, 1982, pages 335-337; Harville, 1997, pages 305-308), 

 1ln
tr

k k

V V
V−∂  ∂

=  
∂ ∂ γ γ

, (3.11) 

 
1

1 1

k k

V V
V V

−
− −∂ ∂

= −
∂ ∂γ γ

. (3.12) 

Hence,  

 1 1 1( 2L)
tr ( ) ' ( )

k k k

V V
V y Xβ V V y Xβ− − − ∂ − ∂ ∂

= − − − 
∂ ∂ ∂ γ γ γ

. (3.13) 
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Equating (4.9) and (4.10) to zero gives the following system 

 1 1ˆˆ ˆ' 'X V Xβ X V y
− −==== , (3.14) 

 
1 1 1

ˆ ˆ

ˆ ˆˆ ˆtr ( ) ' ( ) 0
k kγ γ γ γ

V V
V y Xβ V V y Xβ− − −

= =

 ∂ ∂
− − − = 

∂ ∂ γ γ
, (3.15) 

where β̂ , γ̂  are the solutions to this system (if they exist) and V̂  stands for 

( )ˆV γ .  

Some simplifications can be made. First, β̂  can be eliminated from (3.15) by 

substituting its expression ( )1 1ˆ ˆ ˆ' 'β X V X X V y
−

− −====  from (3.14) into (3.15), and 

by observing that 1 ˆˆ ˆ( )V y Xβ Py
− − =  where  

 ( ) ( )1 1 1 1 1'P V I Q V V X X V X XV
−− − − − −= − = − .  (3.16) 

where Q  is the GLS projector defined in (1.72).  

Then (3.15) becomes 

 
1

ˆ ˆ

tr ' 0
k kγ γ γ γ

V V
V y P Py−

= =

 ∂ ∂
− = 

∂ ∂ γ γ
. (3.17) 

ii) general case 

The system in (3.17) cannot generally be solved analytically and one has to 

recourse to numerical analysis such as the Newton-Raphson or the Fisher 

scoring algorithms. This involves computing the Hessian 

2( ; ) L( ; ) / 'L α y α y α α= ∂ ∂ ∂��  or the Fisher information matrix 

( ) E ( ; )
Y α

J α L α y = − 
��

|
. In the latter case, this gives (see appendix 3.6) 

 
1'

( )
/ 2

X V X 0
J α

0 F

− 
=  
 

, (3.18) 

where  

 ( ) 1 1tr
kl

k l

V V
F V V− − ∂ ∂

=  
∂ ∂ γ γ

. (3.19) 
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Hence, the method of scoring applied to γ  requires iterating with 

 
[ ] [ 1] [ ]( ) ( )n n nJ γ ∆ L γ+ = � , (3.20) 

where 

 
[ 1] [ 1] [ ]n n n∆ γ γ+ += −  

 
[ ]

[ ] 11 1
( ) tr '

2 2
n

n

k k γ γ

V V
L γ V y P Py−

=

  ∂ ∂ 
= − +  

∂ ∂   

�

γ γ
 (3.21) 

 ( )[ ] [ ]
1 / 2( )n n

J γ F γ= . (3.22) 

Once the solution in γ  is found, one obtains β̂  by plugging γ̂  into V , and 

solving (3.14). Notice that this system is similar to the one yielding the GLS 

estimator but here ( )ˆ ˆV V γ=  replaces V .  

iii) case of the linear mixed model 

In this situation, V  takes the form 
0

K

k kk
V V

=
=∑ γ  with /

k k
V V∂ ∂ =γ , 

k
V  being 

a ( x )N N  matrix of known coefficients e.g., 
'

k k k
V Z Z=  for models defined in 

(3.4) and (3.5). Then equation (3.17) becomes 

 ( )1ˆ ˆ ˆtr ' 0
k k

V V y PV Py
− − = . (3.23) 

On account of the linearity property of V , the first term in (3.23) can be 

decomposed as the following sum 

 ( ) ( )1 1 1

0
tr tr

K

k k l ll
V V V V V V

− − −

=
=∑ γ . 

Therefore, the system (3.23) of ML equations can be written as 

 ( )1 1

0

ˆ ˆ ˆ ˆˆtr '
K

k l l kl
V V V V y PV Py

− −

=
=∑ γ  ; ( 0,1,..., )k K= . (3.24) 

Under a matrix form, this is tantamount to 

 ˆ ˆ ˆFγ g= ,  (3.25) 

where F  is a symmetric ( ) ( )( )1 x 1K K+ +  matrix, and g , a ( )1K +  vector 

defined respectively as 
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 ( ) ( )( )1 1tr
m kl m k l

fF V V V V
− −= = , (3.26) 

 ( ) ( )'
c k c k
gg y PV Py= = , (3.27) 

F̂  and ĝ  being F  and g  respectively evaluated at ˆγ γ= .  

Equation (3.25) forms a non linear system which generally has no analytical 

solution. This system can be solved numerically by an iterative algorithm, each 

iteration of which, however, having a linear form 

 ( ) ( )[ ] [ 1] [ ]n n n

F γ γ g γ
+

= , (3.28) 

where 
[ ]n

γ  is the current value of the parameter at iteration n , and 
[ 1]n

γ
+

 is the 

updated value.  

It can be shown that (3.28) is equivalent to solving Fisher’s scoring algorithm in 

(3.20). 

Example 3.1 ML equations for a single random factor model.  

Let us consider the same model as in (3.4) but with just a single random factor 

i.e., y Xβ Ζu e= +++++  where ( )2

1~ ,
q

u 0 σ ΙΙΙΙ , ( )2

0~ ,
N

e 0 σ ΙΙΙΙ , and Cov( , ')u e 0= . We 

can explicit the elements of the system Fγ g=  as follows. The two elements of 

( )0 1
, 'g gg =  are the quadratic forms:

2

0
'g y P y=  and 

1 ' 'g y PZZ Py= . The 

coefficients of F  are 

 ( ) ( )00 0 0

1 1 2tr trf V V V V V
− − −= = , 

 ( ) ( )01 0

1 1 2tr ' tr 'f V V V ZZ Z V Z
− − −= = , 

 ( ) ( )
2

1 1 1

11 tr ' ' tr 'f V ZZ V ZZ Z V Z
− − − = =   

. 

Notice that the calculations of 
0

g  and 
1g  can take advantage of their sum of 

squares structure i.e., ( )
2

0 1

N

i i
g Py

=
=∑ , and ( )

2

1 1
'

q

j j
g Z Py

=
=∑ . Similarly, the 

calculations of 
00

f  and 
11

f  can be simplified knowing that the trace of the 
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product of a matrix ( )m ij
aA =  and its transpose is equal to the sum of its 

squared elements, ( ) 2tr '
ijij

aAA =∑ . Finally, the system to be solved iteratively 

to get the ML estimations of 
2

0
σ  and 2

1σ  is 

 

( ) ( )

( ) ( )

( )

( )

( )

( )

00 01 0 0

01 11 1 1

2 1

2 1

n n n n

n n n n

f f g

f f g

+

+

    
=    

    
    

σ

σ
 

starting from initial values ( )2 0

0σ  and ( )2 0

1σ  which can be taken as guessed values or 

estimations of a quadratic method.  

This procedure can be illustrated by the following numerical application 

pertaining to a two way crossclassified design with factor A as fixed and B as 

random according to the model 

 ijk i j ijky a b e= + + +µ ,  

where 
i

a  is the fixed effect of level i , ( )2

1~ 0,
j iid

b σ  and ( )2

0~ 0,
ijk iid

e σ .  

Table Distribution of data according to levels of factors A and B 

A B n  y  

1 1 2 8, 2 

1 2 2 10, 4 

1 3 6 3, 9, 9, 9, 10, 8 

2 1 5 3, 9, 6, 4, 8 

2 2 9 14, 8, 6, 9, 6, 6, 10, 12, 10 

 

If data are sorted by levels of B first ( )1,2,3j = , the matrices ( , , )X Z y  are as 

follows for 1,2,3j =  
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For 

1 1 1 0 0 8

1 1 1 0 0 2

1 0 1 0 0 3

1 0 1 0 0 9

1 0 1 0 0 6

1 0 1 0 0 4

1 0 1 0 0 8

 
 
 
 
 
 
 
 
 
 
 

, 

1 1 0 1 0 10

1 1 0 1 0 4

1 0 0 1 0 14

1 0 0 1 0 8

1 0 0 1 0 6

1 0 0 1 0 9

1 0 0 1 0 6

1 0 0 1 0 6

1 0 0 1 0 10

1 0 0 1 0 12

1 0 0 1 0 10

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

1 1 0 0 1 3

1 1 0 0 1 9

1 1 0 0 1 9

1 1 0 0 1 10

1 1 0 0 1 8

 
 
 
 
 
 
 
 

. 

The algorithm is initiated from starting values of the parameters. For instance 

with 
2

0
10=σ 2

1
5=σ , one obtains the iterative scheme 

# 
00

f  
01

f  
11

f  
0

g  
1

g  2

0
σ  

2

1
σ  

1 0.211355 0.009810 0.075337 1.611703 0.143796 7.5828 0.9213 

2 0.379308 0.105504 0.843795 2.978514 1.441847 7.6430 0.7531 

3 0.376191 0.125895 1.014146 2.971685 1.707407 7.6539 0.7334 

4 0.375509 0.128598 1.036909 2.968671 1.742377 7.6554 0.7309 

5 0.375416 0.128948 1.039857 2.968245 1.746897 7.6556 0.7306 

As shown on this table displaying the first five iterations, the algorithm 

converges very rapidly to the same final solutions whatever are the starting 

values chosen. According to (3.23), 1ˆ2F−  also provides an estimate of the 

asymptotic sampling variance covariance matrix of the ML estimators that is, for 

2

0
ˆ 7.6556=σ  and 

2

1
ˆ 0.7306=σ   

 1
5.5647 0.6900

ˆ2
0.6897 2.0081

F−
− 

=  
− 

. 

These results can be checked using some standard software.  
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For instance, SAS-Proc Mixed on this data set with the same starting values and 

the Fisher “scoring” option gives 
2

0
ˆ 7.6554=σ , 

2

1
ˆ 0.7310=σ  and 

1
5.5640 0.6897

ˆ2
0.6897 2.0090

F−
− 

=  
− 

. 

Despite the high speed of convergence, this algorithm involves heavy 

computations which make it difficult to apply to large data sets and we will see 

later on how to cope with this problem. However, it can be applied to all kinds 

of mixed linear models involving discrete and/or continuous covariates and even 

correlated random effects.  

3.2.3 Variants 

Profile likelihood 

The principle underlying this procedure lies in maximizing the log-likelihood by 

successive steps. First, we maximize ( )L ;β,γ y  with respect to β . Then, the 

function so obtained ( ) ( )ˆL ; L , ;P γγ y β γ y=  of the single vector γ  is maximized 

with respect to this parameter. It is called the profile (Cox and Reid, 1987) or 

concentrated (Harville and Callanan, 1990) log-likelihood. In short, we can 

summarize the process as follows 

 

( ) ( )

( )
( )

Max L , ; Max Max L , ;

ˆMax L , ;

Max L ;
P

β,γ γ β

γ γ

γ

β γ y β γ y

β γ y

γ y

 =  

=

=

, (3.29) 

where ( )1 1ˆ ' '
γ
β X V X X V y

−− −====  is a GLS solution for β . 

On account of (3.8), minus twice the log-likelihood is 

 ( ) ( ) ( ) ( )1ˆ ˆ2L ; ln 2 ln '
P

N
γ γ

γ y V y Xβ V y Xβ−− = + + − −π , 

or, alternatively, 

 ( ) ( )2L ; ln 2 ln '
P

Nγ y V y Py− = + +π . (3.30) 
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On using the identity 
k k

P V
P P

∂ ∂
= −

∂ ∂γ γ
 (see appendix), one immediately obtains 

the expression of the gradient 

 
( ) 1

2L ;
tr '

P

k k k

γ y V V
V y P Py−

∂ −   ∂ ∂  = − 
∂ ∂ ∂ γ γ γ

, (3.31) 

which actually coincides with (3.17).  

Two remarks are worth mentioning at this stage: 

a) the profile likelihood reduces the dimension of the unknowns by 

“concentrating” the likelihood function onto the parameters of interest, 

after eliminating the nuisance parameters; 

b) however, strictly speaking, this function is not a likelihood function 

even if, occasionally, it holds some of its properties (Berger et al, 

1999). 

Example 3.2 Likelihood and Profile likelihood for a N Gaussian sample 

( )2~ ,
i iid

y µ σN  

Since the observations are independent, the density of the data vector, { }iyy =  is 

the product of the elementary densities 

 ( ) ( )2 2

1
p ; , p ; ,

N

ii
yy

=
= ∏µ σ µ σ . 

Therefore, the loglikelihood ( ) ( )2 2L , ; ln p ; ,y y=µ σ µ σ  for this sample can be 

written as a sum ( ) ( )2 2

1
L , ; L , ;

N

ii
yy

=
=∑µ σ µ σ  where 

( ) ( )2 2L , ; ln p ; ,
i i

y y=µ σ µ σ . By definition of the standard Gaussian 

distribution, 

 ( ) ( )
22 2 2

2L , ; ln 2 ln /i iy y− = + + −µ σ π σ µ σ , 

so that 

 ( ) ( ) ( )
22 2 2

1
2L , ; ln 2 ln /

N

ii
N yy

=
− = + + −∑µ σ π σ µ σ . 
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One can decompose the last sum of squares into 

( ) ( )
2 22

1

N

ii
y N s y

=
 − = + −
 ∑ µ µ , where ( )1

/
N

ii
y y N

=
= ∑  is the sample mean, 

and ( )
22

1
/

N

ii
s y y N

=
= −∑  is the sample variance.  

Hence, 

 ( ) ( )
22

2 2

2
2L , ; ln 2 ln

s y
Ny
 + −

− = + + 
  

µ
µ σ π σ

σ
. 

Since ( ) ( ) 22L / 2 /N y∂ − ∂ = − −µ µ σ , the first step of maximization with 

respect to µ  leads to ˆ y=µ  which does not depend on 
2σ . Therefore, minus 

twice the log-likelihood reduces simply to 

 ( ) ( )2 2 2 22L ; ln 2 ln /
P

N sy− = + +σ π σ σ . 

Differentiating this with respect to 2σ  leads to  

 ( ) ( )2 2 2 4

2
2L ; /P N sy

∂  − = − ∂
σ σ σ

σ
 

that gives for 2N ≥ , 
2 2ˆ s=σ , the usual ML estimator of the variance.  

However, it is important to notice that contrarily to a regular likelihood, the 

expectation of this score function is not zero since ( ) ( )2 2E 1 /s N N= − σ .  

The Hartley-Rao form 

Hartley and Rao (1967) consider linear mixed models as described in (3.4) and 

(3.5). But, instead of parameterizing V  in terms of the variance components 

( )2 2

0c k k K
σ

≤ ≤
= σ ,they single out the residual variance 

2

0
σ  and introduce the 

vector ( )2 2

0 1
/

c k k k K
η

≤ ≤
= =η σ σ , of variance ratios. To that respect, they write V  

as 
0

2V H= σ  where '

1

K

N k k kk
H I Z Z

=
= +∑ η  is a function of only η. Since 

2

0

N
V H= σ , the log-likelihood becomes 

 
( ) ( )

( ) ( )

2 2

0 0

1 2

0

2L , , ; ln 2 ln ln

                                          ' /

N Nβ η y H

y Xβ H y Xβ−

− = + +

+ − −

σ π σ

σ
, (3.32) 
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Then, differentiating this function with respect to the parameters gives 

 
1 2

0

( 2L)
2 ' ( ) /X H y Xβ

β

−∂ −
= − −

∂
σ , (3.33) 

 
1

2 2 4

0 0 0

( 2L) ( ) ' ( )N y Xβ H y Xβ
−∂ − − −

= −
∂σ σ σ

, (3.34) 

 1 1 1 2

0

( 2L)
tr ( ) ' ( ) /

k k k

H H
H y Xβ H H y Xβ− − − ∂ − ∂ ∂

= − − − 
∂ ∂ ∂ 

σ
η η η

. (3.35) 

The ML equations are obtained by equating (3.33), (3.34) and (3.35) to zero 

 1 1ˆˆ ˆ' 'X H Xβ X H y
− −==== , (3.36) 

 2 1

0
ˆ ˆˆˆ ( ) ' ( ) / Ny Xβ H y Xβ

−= − −σ  (3.37) 

 ( )1 1 1 2

0
ˆ ˆˆ ˆ ˆ ˆtr ( ) ' ( ) / 0

k k
H H y Xβ H H H y Xβ

− − −− − − =σ , (3.38) 

where 
'/

k k k k
H H Z Z= ∂ ∂ =η . 

Equation (3.36) looks very similar to the classical one in (3.14) except that it 

involves the variance ratios 
k

η  instead of the variance components 
2

k
σ . The 

Hartley-Rao form leads to a particular equation for the residual variance shown 

in (3.37) for which, as will be seen later on, Henderson (1973) proposed a 

simple algorithm of calculation. As previously, on using  

 ( ) ( ) ( )1 1 1 2

1
tr tr tr

K

k k l l kl
H H H H H H H H

− − − −

=
= +∑ η ,  

(3.38) can be replaced by a quasi-linear system  

 ( ) ( )[ ] [ 1] [ ]n n n

D η η e η
+

= , (3.39) 

where ( ) ( ).
m kl

dD = , ( ) ( ).
c k
ee =  and  

 ( )1 1

kl k l
d tr H H H H

− −=  

 ( )1 1 2 2

0
ˆ ˆ ˆ( ) ' ( ) / tr

k k k
e y Xβ H H H y Xβ H H

− − −= − − −σ  

In the same way, solving for β̂  and 
2

0
σ̂  can be carried out via iterating with 

 
( ) ( ) ( )

1 1
1ˆ' '

n n n
X H Xβ X H y

− −
+   

   ==== , 
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( ) ( ) ( ) ( )

1
2 1 1 1

0
ˆ ˆˆ ( ) ' ( ) /

n n n n
Ny Xβ H y Xβ

−
+ + + = − − σ .  

Letting ( )2

0 , ' 'θ η= σ  and ( )2 2

0c k k K
σ

≤ ≤
= σ , one can derive the expression of the 

information matrix ( )J θ for θ  given that of ( )2 / 2J σ F=  for 
2
σ  using  

 ( ) ( )
2 2

2'

'

σ σ
J θ J σ

θ θ

∂ ∂
=

∂ ∂
.  

3.2.4 Numerical aspects 

Henderson’s algorithm 

Very early, Henderson (1973) had in mind to derive an algorithm that avoids 

computing directly such terms as 
1

V
−

 and P . He started from the same kind of 

linear mixed models as previously and the derivative of 2L
P

−  with respect to 

2

k
σ  which is, from (3.31)  

 ( ) ( )2 1 ' '2L / tr '
P k k k k k

V Z Z y PZ Z Py
−∂ − ∂ = −σ . 

Remember the BLUP ˆ
k

u  of 
k

u  can be written as ( ) ( )1 ˆˆ Cov , 'k ku u y V y Xβ−= − , 

viz, 
2 'ˆ

k k k
u Z Py= σ  so that the quadratic form 

''
k k

y PZ Z Py  reduces simply to a 

sum of squares 
4ˆ ˆ /

k k k

'u u σ . 

Similarly, it can be shown that  

 ( ) ( ) 2

1 0

2 4

tr
tr kkk

k k

k k

q' C
V Z Z

− = −
σ

σ σ
, 

where ( )
1

2 1

0'kk
kk

C Z Z G
−

− = +  
σ  is the ( x )

k k
q q  block pertaining to the random 

factor k  in the inverse of the random factor part of the MME, and 2

1
k

K

k q

k

G I
=

= ⊕σ . 

Therefore, setting to zero the derivatives of 2L
P

−  with respect to 
2

k
σ  leads to 

the equations 

 ( )2 2

0
ˆˆ ˆ ˆ ˆtrk k k k kkq

'u u C= +σ σ . (3.40) 
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As far as the residual variance 
0

2σ  is concerned, the reasoning is based on the 

following profile log-likelihood ( ) ( ) ( )2

0
ˆ ˆ2L ; 2L , , ;

p
η y β η η η y − = −  σ  

pertaining to the Hartley-Rao form, and which is 

 ( ) ( ) ( )2

0
ˆ2L ; ln 2 1 ln ln

p
N Nη y H η− = + + +π σ , 

where 

 ( ) ( ) ( )2 1

0
ˆ ˆˆ ' / Nη y β η H y β η

−   = − −   σ  

and ( )β̂ η  is a solution to 

 ( )1 1ˆ' 'X H Xβ η X H y
− −==== . 

Now, the BLUP ê  of e y Xβ Zu= − −  can be expressed as ê RPy= , (Here 

0

2

N
R I= σ ), so that (ignoring η within parentheses)  

 1 2

0
ˆ ˆ ˆ( ) ' ( ) ' 'y Xβ H y Xβ y Py y e

−− − = =σ  

and 

 ( )2

0
ˆˆ ˆ' ' ' ' ' / Ny y β X y u Z y= − −σ . (3.41) 

Notice the similarity between this formula and the one obtained for the ML 

estimator of 
2σ  in the fixed model case: ( )2 ˆˆ ' ' ' / Ny y β X y= −σ , the numerator 

of both being obtained as the difference between the total sum of squares 'y y  

and the product of the solution of either the MME equations or the LS system 

times their respective right-hand sides.  

Henderson (1973) proposed to utilize (3.40) and (3.41) as a basis for an iterative 

algorithm for computing ML estimations of variance components in models 

such as (3.4), 

 ( )2[ 1] [ ] [ ] [ ] 2[ ]

0
ˆ ˆ tr /n n n n n

k k k kk k
q

'
u u C

+  = + σ σ  (3.42) 

 ( )0

2[ 1] [ ] [ ]ˆ ˆ' ' ' /n n n
N

' 'y y β X y u Z y+ = − −σ , (3.43) 
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where [ ]ˆ n
β , 

[ ]ˆ n
u are solutions to the HMME using 

2[ ]

0

nσ  and 
2[ ]n

k
σ  in the 

coefficient matrix. 

Formula (3.43) can be easily extended to the case of correlated random vectors 

 

2

2

k k q kl q

l kl q l q

Var
u I I

u I I

  
=        

σ σ

σ σ
 

with the same dimension. Then  

 { }[ 1] [ ]' [ ] [ ] 2[ ]

0
ˆ ˆ tr /n n n n n

kl k l kl
qu u C

+  = +  σ σ  (3.44) 

An appealing variant of this algorithm was formulated by Harville (1977). The 

idea is to rewrite (3.40) in substituting 
2 /
k k

σ η  to 
2

0
σ  so that, after factorizing 

2

k
σ  

on the left, one obtains 

 ( )2[ 1] [ ] [ ] [ ] [ ]ˆ ˆ / tr /n n n n n

k k k k kk k
q

'
u u C

+  = − σ η , (3.45) 

that is used jointly with (3.42). 

Apart from their simplicity, these two algorithms have the pleasing property of 

yielding positive values for the estimations of variance components provided 

they are started with strictly positive values 2[0] 0k >σ  for all variance 

components. In addition, in many examples, Harville’s version of the algorithm 

turned out to be faster than that of Henderson.  

Calculation of 2L p−  

Let us start with the expression of the profile log-likelihood as a function of γ  

after maximization for β ,  

 ( )2L ln 2 ln '
P

N V y Py− = + +π . (3.46) 

First, we have already shown that in a linear mixed model such that 

'V ΖGZ R= + , one has 
1ˆPy R e−=  so that 

 1 1ˆ' ' ' 'y Py y R y θ T R y
− −= − , (3.47) 

where ( , )T X Z= , and ( )ˆ ˆ ˆ', ' 'θ β u=  are solutions to the HMME.  
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Furthermore applying the rules of determinant computation by blocks to the 

following partition 

 
1 1

1 1 1
' '

R R Z
A

Z R Z R Z G

− −

− − −

 
=  

+ 
 

gives 

 1 1 1 1 1' ' 1 /A R Z R Z G Z R RR Z R G
− − − − −= + − = , 

and symmetrically 

 

( )
1

1 1 1 1 1 1 1 1 1' ' ' ' /A Z R Z G R R Z Z R Z G Z R Z R Z G V
−− − − − − − − − −= + − + = +  

which, being equal, leads to 

 1 1'V R G Z R Z G
− −= + . (3.48) 

Substituting (3.47) and (3.48) into (3.46), we can express 2L p−  under a more 

explicit and computable form which can be applied to any Gaussian linear 

mixed model ~ ( , ' )y Xβ ZGZ R+N  

 

1 1

1 1

2L ln 2 ln ln ln '

ˆ                         ' ' '

P N R G Z R Z G

y R y θ T R y

− −

− −

− = + + + +

+ −

π
. (3.49) 

By definition, this formula can be employed at any stage of the search of γ  

which maximizes the log-likelihood, and in particular to determine the value of 

its maximum L
m

 

 ˆ ˆ2L 2L ( , )
m P ML ML

G G R R− = − = =  

using the elements of the HMME.  

Further simplifications arise in formula (3.49) for special structures of R  and G  

Example 3.3 Expression of the loglikehood when 
2

0 N
R I= σ  

We first consider this usual case of independent residuals with a homogeneous 

variance 
0

2σ . Then, 
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0

2ln lnNR = σ  ; ( )1 1 2 1 2

0 0' ' /Z R Z G Z Z G
− − −+ = + σ σ , 

and 

 ( )1 1 2

0
ˆ ˆ' ' ' ' ' ' /y R y θ T R y y y θ T y− −− = − σ . 

Hence, 2L
P

−  as a function of 
0

2σ  and of the parameters (say g ) determining G  

is 

 
( ) ( )

( )

2 2 2 1

0 0 0

2

0

2L , ; ln 2 ln ln ln '

ˆ' ' ' /

P N N qg y G Z Z G

y y θ T y

−− = + − + + +

+ −

σ π σ σ

σ
.(3.50) 

Moreover, let us assume that 
1

K

k

k

G G
=

= ⊕  with 
2

k k k
G A= σ for 1,...,k K=  i.e., that 

the K  random factors are also independent, then the previous expression 

becomes 

 

( )

( ) ( )

2 2

01 1

1 2 2 2

0 01
1

2L ln 2 ln ln

ˆ            ln ln ' / ' ' ' /

K K

P k k kk k

K
K

k k kk
k

N N q q

A Z Z A y y θ T y

= =

−

=
=

− = + − + +

+ + + −

∑ ∑

∑ ⊕

π σ σ

σ σ σ
 

We can go a step further by setting as parameters 
0

2σ  and 

( )2 2

0 1
/

c k k k K
η

≤ ≤
= =η σ σ  as before, and consider the profile log-likelihood 

( ) ( )2
0

* 2

0
L ; Max L , ;

P P
η y η y=

σ
σ  obtained after maximization with respect to 

2

0
σ . 

Now, ( ) ( )2

0
ˆˆ ' ' ' / Nη y y θ T y= −σ  as in Henderson’s algorithm, and substituting 

this in the previous expression gives the profile log-likelihood 

 

( ) ( ) ( )* 2

0 1

1

1
1

ˆ2L ; ln 2 1 ln ln

            ln ln ' /

K

P k kk

K
K

k k kk
k

N N qη y η

A Z Z A

=

−

=
=

− = + + + +

+ +

∑

∑ ⊕

π σ η

η
. (3.51) 

Example 3.4 ML estimation in the random coefficients models for growth data 

(Example 1.6 continued) 
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The data considered he are a subsample (girls) of set due to Pothoff and Roy 

(1964) about facial growth measurements made on 27 children at 4 equidistant 

ages (8,10,12 and 14 years) with 4 missing values as defined by Little and Rubin 

(1987).  

Table 3.1: Facial growth* measurements taken on 11 girls at 4 ages 

 Age (years) 

Girl 8 10 12 14 

1 210 200 215 230 

2 210 215 240 255 

3 205 NA 245 260 

4 235 245 250 265 

5 215 230 225 235 

6 200 NA 210 225 

7 215 225 230 250 

8 230 230 235 240 

9 200 NA 220 215 

10 165 NA 190 195 

11 245 250 280 280 

*distance from the centre of the pituary to the pteryomaxillary fissure (unit 10-4m) 

Letting ( )* 8 / 2
j j

t t= − , the model can be written as 

 * *

ij j i i j ij
y t a b t e= + + + +α β , (3.52) 

where ijy  represents the 
thj  measurement taken at age *

j
t  on the 

th
i  individual. 

The fixed part *

j
t+α β  describes the overall population profile with α  being the 

(fixed intercept) at an age of 8 years, β  the rate of growth for a 2-year period 

and the random part *

i i j
a b t+  corresponds to the subject-specific i  deviation 

counterpart such that 
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2

iid 2

0
~ ,

0

i a ab

i ab b

a

b

     
     
      

σ σ

σ σ
N . 

The residuals ije  are assumed ( )2

iid~ 0,
ij e

e σN .  

Let us begin with the random intercept model *

ij j i ij
y t a e= + + +α β . 

Here the HMME are 

 
[ ] [ ]

[ ]

[ ]2 2

ˆ' ' '

'' ' / ˆ

n

n n n
e a

X X X Z β X y

Z yZ X Z Z I u

    
=      +    σ σ

 (3.53) 

where 
40 62

'
62 150

X X
 

=  
 

, 
4 4 3 4 4 3 4 4 3 3 4

'
6 6 5 6 6 5 6 6 5 5 6

X Z
 

=  
 

, 

( )' 4 4 3 4 4 3 4 4 3 3 4DiagZ Z = , ( )' 9115 14625 'X y = , and 

( )' 855 920 710 995 905 635 920 935 635 550 1055 'Z y = .  

Starting values for the variance components can be chosen somewhat 

arbitrarily ; here we took 
[ ]2 0

200
e

=σ  and 
[ ]2 0

100
a

=σ . Based on these values, we 

solve (3.53) in β̂  and û  followed by (3.42) and (3.43) and obtain the following 

iterative scheme.  

Table 3.2. Solutions to ML and MME equations by round of iteration 

n  [ ].α  [ ].β  
[ ].
1

a  
[ ]2 .

e
σ  

[ ]2 .

a
σ  

1 211.91 9.64 -8.41 192.1207 207.2596 

2 211.48 9.74 -10.02 129.0611 308.9038 

3 211.19 9.81 -11.01 86.8348 374.0731 

4 211.07 9.85 -11.42 68.4920 400.3699 

5 211.02 9.86 -11.56 62.0439 408.8686 

6 211.00 9.86 -11.63 59.9569 411.4967 

10 211.00 9.86 -11.63 59.0118 412.6650 

15 211.00 9.86 -11.63 59.0022 412.6756 
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Iterations were stopped when 
[ ] [ ] [ ]

1/2
2 2

1
/

n n n
θ θ θ

+ − < 
 

ε  where ( )2 2, '
e a

θ = σ σ

and 
610−=ε .  

The procedure provides in the same time as a by product solutions to the HMME 

for variance components set equal to their ML estimations: here we have 

ˆ 211.002 6.457= ±α , ˆ 9.863 1.048= ±β , 
1

ˆ 11.631 7.114a = − ± ,…, 

11
ˆ 36.643 7.114a = ±  and 2L 312.5446

m
− =  (formula 3.51).  

For instance, SAS-Proc Mixed on this data set gives 
2ˆ 412.6400
a

=σ  and 

2ˆ 59.0040
e

=σ , ˆ 211.000 6.457= ±α , ˆ 9.863 1.049= ±β , 

1
ˆ 11.631 7.114a = − ± ,…, 

11
ˆ 36.643 7.114a = ±  and 2L 312.5446

m
− = .  

This algorithm extends very easily to the case of the “intercept+slope” model in 

(3.52). In the HMME given in (3.53) 
[ ] [ ]( )

1
2 n n

e
G

−

σ replace 
[ ] [ ]2 2

11
/

n n

e a
Iσ σ  where 

2

112

a ab

ab b

G I
 

= ⊗ 
 

σ σ

σ σ
 if random effects are listed as ( )'

1 11
'

r i i
u u

≤ ≤
=  with 

( )' ,
i i i

a bu = . The formulae for the variance components are (3.42) and (3.43) as 

before, the covariance estimate of 
ab

σ being updated via (3.44). Starting from 

[ ]2 0
50

e
=σ , 

[ ]02
400

a
=σ , 

[ ]0
0

ab
=σ  and 

[ ]02
20

b
=σ , one obtains 

Table 3.3. Solutions to Henderson’s equations equations by round of iteration 

n  [ ].2

e
σ  [ ]2 .

a
σ  [ ].

ab
σ  

[ ]2 .

b
σ  

1 38.1878 368.4004 3.1625 15.4757 

10 36.9055 364.4838 7.7950 12.0136 

20 37.2109 363.2651 8.0972 11.8291 

30 37.2381 363.8096 8.1243 11.8126 

43 37.2407 363.4243 8.1270 11.8110 

The numerical process needs more iterations than previously (43 as compared to 

14) for the same level of accuracy. Final estimations are 
2ˆ 37.2408
e

=σ , 
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2ˆ 363.8043
a

=σ , ˆ 8.1270
ab

=σ , 
2ˆ 11.8110
b

=σ  and 2L 308.4897
m

− =  (formula 

3.50). Again, these values are very similar to those obtained with SAS-Proc 

Mixed that are 
2ˆ 37.2421
e

=σ , 
2ˆ 363.7800
a

=σ , ˆ 8.1293
ab

=σ  and 
2ˆ 11.8108
b

=σ  

2L 308.4898
m

− = . Finally, the reader is encouraged to replicate these 

procedures on the “Boy” sample (Table 3.4) of this data set (See Exercise 3.8).  

3.2.5 Hypothesis testing 

Tests of hypotheses may concern either fixed or random effects. Regarding fixed 

effects, since data are correlated with possibly heterogeneous variances, the 

usual Fisher-Snedecor statistic, which was derived for iid Gaussian data and 

linear models no longer applies. Regarding variance components, ratios of mean 

squares, which prevail in the context of ANOVA with balanced data, are also 

inappropriate in the unbalanced case even for purely random models. 

For conciseness reasons, testing procedures for random effects are presented just 

once in the next part, since REML is precisely the method devoted to estimation 

of variance components.  

Before going into the procedures themselves, let us recall the basic results of the 

asymptotic normality properties of maximum likelihood estimators which 

underlie all this testing theory. 

Asymptotic normality 

Let ˆ
N
α  be the ML estimator of α∈ Α  from a data sample 

N
y  of size N . Under 

the usual regularity conditions (compact parameter space, continuous log-

likelihood function and continuously differentiable up to the third order, existing 

information matrix and its inverse), the sequence ( )ˆ
N

N α α−  converges in 

distribution to a centered Gaussian distribution having variance-covariance 

matrix ( )
1

Lim NN J α
−

    when N → ∞  (Sweeting, 1980; Mardia and Marshall, 

1984). In short,  

 ( ) ( )( )1
ˆ 0,Lim N NN Nα α J α

−
− →   

L
N , (3.54)  
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where ( ) ( )2E L ; / '
N N

J α α y α α = −∂ ∂ ∂   is the Fisher information matrix 

pertaining to α . 

Since ( )
1

Lim  NN J α
−

    can be consistently estimated by ( )
1

ˆ
NN J α

−
   , one can 

construct the following asymptotic pivot (Leonard and Hsu, 1999, page 35): 

 ( ) ( )/2ˆ ˆ ,T

N NJ α α 0 I− →
L
N , (3.55) 

where /2ˆ T

N
J  is the condensed notation for the Cholesky decomposition 

( ) 1/2 /2ˆ ˆ ˆˆ T

N N N N
J α J J J= = .  

The asymptotic property in (3.54) can be extended to a continuously 

differentiable function ( )g α  (from p
R  to q

R ) 

 ( ) ( )
( )

( )
( )1 '

ˆ 0,Lim 
'

N N
N N

g α g α
g α g α J α

α α

−∂ ∂ 
 − →      ∂ ∂ L

N ,(3.56) 

where ( ) / 'g α α∂ ∂  indicates the ( )xq p matrix having ( ) /
i j

g α∂ ∂α  as element 

( )ij  and ( )' /g α α∂ ∂  is its transpose.  

The Wald statistic 

Let us consider the test of the null hypothesis 
0

H : 'C β m=  against its 

alternative 
1

H : 'C β m≠  where 'C  is a ( x )r p  matrix whose r  rows are linearly 

independent and m  is a ( x1)r  vector of constants often nil but not necessarily 

(see chapter 1, section 1.4).  

We have seen that the asymptotic distributions of the ML estimators of β̂  

and γ̂  are independent and that the information matrix pertaining to β  is 

1'J X V X−=β . In such conditions, we can apply the previous results (3.54) and 

(3.55) to ˆ'C β  so that, under 
0

H  

 ( ) ( )ˆ' 0,Lim 'N NC β m C J C−− → β
L

N , (3.57) 

and, letting 
1ˆ ˆ'J X V X

−=β , 
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 ( ) ( ) ( )
/2

1
ˆˆ' ' ,

T

r
C J C C β m 0 I

−
−  − →

  β
L
N . (3.58) 

Hence, on multiplying (3.58) by its transpose, one obtains an asymptotic Chi-

square distribution with r  degrees of freedom 

 ( ) ( ) ( )
1

1 2ˆ ˆˆ' ' ' ' '
r

d
C β m C X V X C C β m

−−
− − − →

  
χ

�
 (3.59) 

that is precisely the distribution of the Wald statistic under 
0

H  for the test 

considered.  

Notice the close similarity between this statistic and the one that would have 

been used if V  had been known. The difference lies in V  replaced here by its 

ML estimation V̂  and consequently by the Chi-square so obtained being now 

not the true distribution but an asymptotic one. This is why the property is often 

symbolized under the classical form 

 ( )1ˆ ˆ' '  ' 'C β C β C X V X C
−

− →
  

,,,,N , (3.60) 

Strictly speaking, although practical, this notation is an abuse since the limiting 

distribution of ˆ'C β  is degenerate with a covariance matrix equal to zero. Only 

the notations shown in (3.58) and (3.59) are correct.   

Several software (see e.g., Littell et al., 2006, page 756) offer a Fisher-Snedecor 

option for this test by analogy with the case when V  is known a part from a 

constant. As a matter of fact when 
2

0V H= σ  and H  is known, and if one defines 

by ( )2

0W σ  the quantity ( ) ( ) ( )
1

1ˆ ˆ' ' ' ' 'C β m C X V X C C β m
−

−
− − −  

, then, under 

0H , the statistic ( )2

0
ˆ /W rσ  has a Fisher-Snedecor distribution [ ]F , - r( )r N X  (see 

section 1.5, formulae 1.84 and 1.85). Here 
2

0σ̂  is the usual ML estimator 

( )1 1ˆ' ' / Ny H y β H y− −−  based on β̂ , the GLS (or ML) estimator of β . Similarly, 

in the general case, one forms ˆ /W r , Ŵ  being the Wald statistic in (3.59); its 
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value is compared with that of a ( )F ,r d  where the number of degrees of 

freedom d  is computed according to some approximation One of the most 

popular technique for calculating d  is the Satterthwaite approximation. For 

1r = , it reduces to ( )2 22 / Vard SE SE ≈    where SE  is the asymptotic standard 

error of ˆ'C β . 
2

SE  can be approximated by ( )1ˆ' 'C X V X C
−

−
 or its MME 

equivalent. ( )2Var SE is more tricky. Technical details are given in (Giesbrecht 

and Burns, 1985; Fai and Cornelius, 1996; Littell et al, 2006). Except in some 

special cases of balanced designs, the resulting distribution under 
0

H  is no 

longer an exact Fisher-Snedecor (or square of a Student for 1r = ). Therefore, 

although this procedure based on certain calculations of d  might be practically 

efficient as proved by simulation (McBride, 2000; Shaalje et al., 2002), it 

remains an approximation with no clear theoretical foundation.  

The likelihood ratio statistic 

An alternative to Wald’s test lies in the likelihood ratio test also known as the 

Neyman-Pearson test. It can be formulated as follows: see e.g., Mood et al., 

(1974), page 419; Cox and Hinkley, (1974), page 322 

 { } { }0 0H : xβ γ∈Β ∈Γ  versus ( ){ } { }1 0H : \ xβ γ∈ Β Β ∈Γ . 

For instance, in the previous example Β  corresponds to p
R  and 

0
Β  is the real 

subspace of dimension p r−  pertaining to p
R  constrained by the r  

relationships 
0

H : 'C β m= . 

Now, let us consider the maximum of the log-likelihood L( , ; ) log p( ; , )β γ y y β γ=  

under the two conditions 
0

H  (reduced model) and 
0 1

H H∪  (complete model)  

 
0, ,Max L( , ; )R mL β γ β γ y∈Β ∈Γ=  ; 

0, ,Max L( , ; )C mL β γ β γ y∈Β ∈Γ= . 

It has been shown (Cox and Hinkley, 1974) that the statistic , ,2 2
R m C m

L L= − +λ  

contrasting 2
m

L−  between the reduced and the complete models respectively, 
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has under 
0

H  an asymptotic Chi-square distribution, the number of degrees of 

freedom of which being the difference between the dimension of Β  and that of 

0
Β . In short 

 
0

0

2

, , dim( ) dim( )H
2 2R m C m

d
L L Β − Β= − + →λ χ . (3.61) 

Let us go back to the usual test of 
0

H : 'C β m=  against its alternative 

1
H : 'C β m≠ . How do we test such assumptions via the likelihood ratio test? 

This is obvious when 'C β m=  can be translated as a simple reduced model (see 

forthcoming example). However, this is not always the case as for instance in a 

ijµ  model or when testing some specific interaction contrasts. When the reduced 

model cannot be made explicit directly, we have to specify it as ~ ( , )y Xβ VN  

with the constraint 'C β m= . Thus, maximizing the log-likelihood function 

requires to take into account such a constraint. This is accomplished by forming 

the function  

 ( )*L ( , , ; ) L( , ; ) ' 'β θ γ y β γ y θ C β m= + − , 

where θ  is a ( )x1r  vector of Lagrange multipliers.  

Differentiating 
*L ( , , ; )β θ γ y  with respect to β , θ  and γ  gives 

 
* 1L ( , , ; ) / ' ( )β θ γ y β X V y Xβ Cθ−∂ ∂ = − + , 

 
*L ( , , ; ) / 'β θ γ y θ C β∂ ∂ = , 

 
*L ( , , ; ) / L( , ; ) /β θ γ y γ β γ y γ∂ ∂ = ∂ ∂ . 

Setting the first two derivatives to zero enables to construct the profile 

likelihood * *

,
L ( ; ) max L ( , , ; )

P β θ
γ y β θ γ y=  i.e., 

 ( ) ( ) ( )* 12L ( ; ) ln 2 ln '
P

Nγ y V y Xβ V y Xβ
−− = + + − −� �π  

where β�  is a solution to the system 

 

1 1' '

'

X V X C X V yβ

C 0 mθ

− −    
=    

    

�

�
. (3.62) 
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It remains to maximize 
*L ( ; )
P
γ y  with respect to γ . In the case of standard linear 

mixed models such that 2 ' 2

01

K

k k k Nk
V Ζ Z I

=
= +∑ σ σ , this can be done for instance 

via the Henderson algorithm provided some appropriate modifications are 

carried out. 

First, on account of (3.62), the mixed model equations become 

 
2 1

0

*

' ' '

' ' '

'

X X X Z C β X y

Z X Z Z G 0 u Z y

C 0 0 θ m

−

    
    

+ =    
        

�

�

�

σ , (3.63) 

where 
* 2

0θ θ=� �σ . 

Two, the algorithm for 2

0σ  also needs some adaptation. Remember this algorithm 

is based on expressing ( ) ( )1'y Xβ H y Xβ
−− −� �  as a function of y  and of the 

BLUP e�  of e  Here e y Xβ Zu= − −�� �  with β�  and u�  solutions to (3.63). Given 

2

0 N
R I= σ  and 

2

0V H= σ , e�  can also be written as ( )1
e H y Xβ

−= − ��  so that  

 ( ) ( ) ( )1 1' ' ' 'y Xβ H y Xβ y e β X H y Xβ
− −− − = − −� � � �� . 

In the standard case of a model without constraint, the last term is zero. But 

here, it is not as shown in (3.62) and is equal to 
2 *

0 ' 'β Cθ β Cθ=� � � �σ  or alternatively 

*'m θ� . Hence, the formula to iterate with is  

 
[ ] [ ] [ ] [ ]( )2 1 ' ' * '

0 ' ' ' /
t t t t

Ny y β X y u Z y θ m
+

= − − −� ��σ .  (3.64) 

Notice in passing how remarkable the extension of Henderson’s formula to this 

case is. The formula for 
2[ 1]t

k

+σ  remains unchanged as in (3.42). After having 

iterated with 
[ ]( )k

β γ�  and 
[ ]k
γ , we can easily calculate the maximum ,L

R m of 

L( , ; )β γ y  under 
0

H  

( ) 2

, 0 1
1

2L ln 2 1 ln ln ln ' /
k

K
K

R m k k q kk
k

N N q Z Z I
=

=

− = + + + + +∑ ⊕� ��π σ η η (3.65) 
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and contrast it with ,2L
C m

−  of the complete model.  

The score statistic 

Under the same conditions as previously, the score test proposed by Rao (1973) 

relies on the following statistic 

 '
U S J S−= � �� �

β β β , (3.66) 

where S� β  is the value of the score function ( ), ; /LS β γ y β= ∂ ∂β  evaluated at the 

point, β β= �  and γ γ= �  of the ML estimations obtained under the reduced model, 

and J� β  is the corresponding value of the Fisher information matrix 

( )2E L , ; / 'J β γ y β β = − ∂ ∂ ∂ β  pertaining to β  evaluated at the same point 

( ),J J β γ= �� �
β β .  

The basic idea underlying this test is very simple. If ( ) 'U ,β γ S J S= β β β  were 

evaluated at the point ˆβ β=  and ˆγ γ=  of the ML estimations obtained under the 

complete model, then ( )ˆ ˆU ,β γ  would be zero as from definition of the score: 

( )ˆ ˆ, ;S β γ y 0=β . Evaluated at β β= �  and γ γ= � , this quadratic form is a measure 

of distance from its nil reference value. If the value is close to zero, one will 

tend to accept 
0

H ; on the contrary, the higher the value of U , the higher the 

probability to reject 
0

H .  

As before, this statistic has, under the null hypothesis, an asymptotic Chi-square 

distribution, the number of degrees of freedom of which being the difference 

between the numbers of parameters of the complete and reduced models. In 

short,  

 ( )
0

0

2

dim( ) dim( )
H

U ,
d

β γ Β − Β→� � χ . (3.67) 
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Let us come back to testing 
0

H : 'C β m=  against 
1

H : 'C β m≠ . From the 

definition of L( , ; )β γ y , the score function is ( )1S 'X V y Xβ−= −β  and the Fisher 

information matrix 1'J X V X−=β . Evaluated under 
0

H , the score function 

reduces to S Cθ=� �
β . This is so because following (3.62) 

1 1' 'X V Xβ Cθ X V y− −+ =� � . Hence, the expression for the score statistic is 

 ( )1U ' ' 'θ C X V X Cθ
−−= � � . (3.68) 

As previously, U  can be easily computed from the elements of HMME in (3.63) 

as 

 ( )*' * 2

0
U ' /θ C C Cθ= � � � �

ββ σ  (3.69) 

where C� ββ  is the block pertaining to β�  in a generalized inverse of the 

coefficient matrix of (3.63) and 
2

0
�σ  is the ML estimator of the residual variance 

calculated as in (3.64).  

Example 3.5 Testing for 
2
β 0=  in ( ) 1 1 2 2E y X β X β= +  

The test for the absence of effects of some covariates is especially interesting to 

consider as this question often arises in practice. Due to the formulation of 
0

H , 

one can easily derive the expression of the likelihood ratio statistic. This is done 

by contrasting the reduced model (R) 
1 1

y X β e= +  to the complete model (C) 

1 1 2 2
y X β X β e= + +  assuming both models have the same covariance structure 

~ ( , )e 0 VN . For the sake of simplicity, 
1

X  and 
2

X  are taken as full rank matrices 

with sizes ( )1xN p  and ( )2xN p  respectively.  

Letting ,R m
L  and ,C m

L  be the maximum of the log-likelihood function under the 

reduced and complete models respectively, one can write 

 
, 12 ln 2 ln '

R m
L N V y P y− = + +� �π , (3.70) 
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,

ˆ ˆ2 ln 2 ln '
C m

L N V y Py− = + +π , (3.71) 

where ( )V V γ=� � , ( )ˆ ˆV V γ=  are the estimations of the variance covariance 

functions under the R and C models respectively, ( )1

1 1N
P V I Q

−= −  and 

( )1

N
P V I Q

−= −  with ( )1 1

1 1 1 1 1

' '
Q X X V X X V

−
− −=  and ( )1 1' 'Q X X V X X V

−− −= , 

X  being ( )1 2,X X . 

Finally, the test statistic λ  is obtained as , ,2 2
R m C m

L L= − +λ , the P-value of 

which is determined from its asymptotic Chi-square distribution with 
2

p  

degrees of freedom. Expressions (3.70) and (3.71) can also be computed from 

the elements of the HMME: see (3.49) and example 3.3.  

Conceptually, the simplest test to apply in this situation is the Wald test. By 

application of (3.59) in the case of 
0

H : 'C β m=  (here 
2
β 0= ), the test statistic 

turns out to be:  

 '

2 2 1 2 2

'ˆ ˆˆW β X P X β= , (3.72) 

where ( )2 2
ˆ ˆ ˆβ β γ=  is the solution to ( ) ( )2 1 2 2 2 1

' 'ˆˆ ˆˆX P X β γ X P y= , with 
1

P̂  being as 

before but evaluated at ( )1 1
ˆP P γ= , the ML estimation of γ̂  under the complete 

model.  

From the definition of 
2
β̂ , one can derive an alternative expression for W  i.e.,  

 '

2 2 1

'ˆ ˆW β X P y= , (3.73) 

which will be useful later on for comparing W  to the score statistic.  

Notice that again, (3.72) or (3.73) can be easily computed from the HMME. 

Assuming for instance that 
2

0 N
R I= σ , these are 

 

' ' ' '
11 1 1 2 1 1

' ' ' '

2 1 2 2 2 2 2

2 1

1 2 0

ˆ

ˆ

ˆ' ' ' '

βX X X X X Z X y

X X X X X Z β X y

Z X Z X Z Z G u Z y
−

    
    

=    
    +      

σ

. (3.74) 
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Thus, (3.72) is simply 2 ' 1

0 2 22 2
ˆ ˆ ˆˆW β C β

−= σ  where 
22

Ĉ  is the block pertaining to 
2
β̂  in 

the inverse of the coefficient matrix.  

Here the value of the score function reduces to  

 
1

2 1

' ( )

0
S

X V y Xβ−

 
=  

− 

�
��β ,  

where ( )1 1
β β γ=� � � and ( )ˆV V γ=�  are the ML estimations of 

1
β  and ( )V γ  under 

the reduced model ( ) 1 1E y X β= . 

The zero term in S� β  comes from the nil value of the score function i.e., 

1

1 1

' ( )X V y Xβ 0− − =��  under the reduced model. This result can also be obtained 

by applying (3.68) to the system (3.62) with ( )( )
22 1x

,
pp p

C 0 I=  and 2β 0=�  so that 

2

0
Cθ

θ

 
=  
 

 with 
2
θ  being equal to 

1 1

2 1 1 2 2

' 'X V X β θ X V y− −+ =�� � .  

Now 
1

2 1

' ( )X V y Xβ− − ��  is precisely 2 1

'X P y�  with 1P�  evaluated at γ γ= � . Then, since 

1'J X V X−=β , the score statistic turns out to be  

 ( )
1

1 2 2 1 2 2 1

' ''U y P X X P X X P y
−

=� � � � . 

Letting 2β
�  be the solution to ( )2 1 2 2 2 1

' '
X P X β X P y=�� � , then U�  can also be written 

as 

 
'

2 2 1

'U β X P y= �� � . (3.75) 

Thus, the score statistic in (3.75) presents the same form as the Wald statistic in 

(3.73), the only difference being that the first is based on the ML estimation 

( )V V γ=� �  of V  under the reduced model while the second utilises ( )ˆ ˆV V γ= , 

the estimation under the complete model. Therefore, computationally speaking, 

there is little if anything to gain in applying the score test as compared to that of 

Wald.  
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Example 3.6 Testing the homogeneity of slopes between genders in the analysis 

of growth data (Example 1.6 and 3.4 continued) 

Here, the data comprises both the girl and boy samples measured at 4 equidistant 

ages (8,10,12 and 14 years) with 9 missing values as defined by Little and Rubin 

(1987). We will use the same notations as in example 1.6 with i  refering to 

gender ( 1,2i =  for boys and girls respectively), j  to measurement 1,...,4j =  and 

k  to individual within gender ( 1,...,16k =  for 1i = , and 1,...,11k =  for 2i = ).  

Table 3.4. Facial growth measurements taken on 16 boys at 4 ages 

 

 Age (years) 

Boy 8 10 12 14 

1 260 250 290 310 

2 215  230 265 

3 230 225 240 275 

4 255 275 265 270 

5 200  225 260 

6 245 255 270 285 

7 220 220 245 265 

8 240 215 245 255 

9 230 205 310 260 

10 275 280 310 315 

11 230 230 235 250 

12 215  240 280 

13 170  260 295 

14 225 255 255 260 

15 230 245 260 300 

16 220  235 250 

 

Let ( )ik ijk
yy = , ( )ik ijk

ee = , ( )1 2 1 1 2 1, , , 'β = − −α α α β β β , ( ), '
ik ik ik

a bu = , 

( )4 4 4, , ,
ik

X 1 0 t 0=  if 1i = , ( )4 4, , ,
ik

X 1 1 t t=  if 2i =  and ( )4 ,
ik

Z 1 t=  with 
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( )1 2 3 4, , , 't t t tt = , then the model can be written under its typical linear mixed 

model form  

 
ik ik ik ik ik

y X β Z u e= + + , (3.76) 

where ( )0~ ,
ik iid

u 0 GN  and ( )0~ ,
ik iid

e 0 RN . We will assume that 
2

0 4e
R I= σ  

and 
2

0 27a
G I= σ  (random intercept model). Data are shown on tables 3.1 and 3.4 

Estimating parameters under the complete (C) model (Gender + Age + 

Gender*Age) via the Henderson’s algorithm gives: 

  

 Table 3.5. ML estimates under two models for growth measurements  

Parameters Complete model Reduced model 

1
α  211.3364±6.5109 205.8594±6.1090 

2 1
−α α  14.6318±8.4495 23.8888±7.4950 

1
β  9.7795±1.9381 13.3062±1.2826 

2 1
−β β  5.9550±2.5160  

2

e
σ  201.7364 217.3041 

2

a
σ  309.5281 305.8440 

2
m

L−  857.2247 862.6231 

 

In order to test the nul hypothesis that 2 1 0∆ = − =β β β , we can apply first the 

Wald test based on the ML estimation ∆̂β  of ∆β  and its standard error SE  under 

the complete model. This gives ˆ / 2.3669SE∆ =β  giving a P-value of 

( )2 2

1 2.3669 0.0179P ≥ =χ . We can also use the F-type test (here equivalent to a 

t-test on the square root of the corresponding statistics). With the Satterthwaite 

approximation, 72d =  (according to SAS-Proc Mixed) so that the adjusted P-

value becomes ( )2

1,72 2.3669 0.0206P F ≥ = .  
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By contrasting 2
m

L−  between the two models, one has 862.6231 857.2247= −λ  

that is 5.3984=λ  leading to a P-value of ( )2

1 5.3984 0.0201P ≥ =χ . Finally, as 

far as the score test is concerned, we just have to pick the variance component 

estimations from the reduced model 
2 217.3041
e

=σ  and 
2 305.8440
a

=σ , plug 

them into the HMME (3.74) and solve them. Doing so gives 5.9570∆ =� β  and 

2.6111SE =β  so that the corresponding P-value is ( )2 2

1 2.2813 0.0225P ≥ =χ  

which is very close to the F-type Wald test and the LRT.  

Discussion 

The three statistics (Wald, Neyman-Pearson, Rao) have the same asymptotic 

properties under the null hypothesis (Rao, 1973; Gourieroux and Montford, 

1989).  

First, with respect to the asymptotic conditions, it is important to question their 

applicability given the data and model structures. Is the number N  of 

observations or experimental units large enough? What is expected when this 

number increases? Does the size p  of β  increase accordingly or not? If so, what 

happens to the ratio /N p . Most authors assumed p  being fixed or bounded or, 

at least, increasing at a slower rate than N  to establish the asymptotic properties 

of ML estimators. One must ask such questions before applying the 

corersponding tests blindly.  

Secondly, the debate remains open about the relative merits of these three tests 

for finite samples with however, a tendency to prefer the likelihood ratio test. 

The likelihood ratio test requires contrasting two models: the complete and 

reduced models whereas the Wald test only requires running the complete 

model. But, it also has the disadvantage of not being functionally invariant; it is 

actually a quadratic Taylor expansion of the log-likelihood function about the 

parameter value around its maximum. This point might be important to ponder 

in some regression analysis problems. We have seen here that there is little to 
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gain in computations by applying the score statistic for testing the absence of 

effects of some covariates.  

A further point deserves careful attention. By construction, the reduced model 

corresponding to 
0

H  must be nested within the complete model for applying the 

likelihood ratio test which imposes some restrictions on the kind of hypotheses 

that can be tested.  

For instance, comparison of models with respect to fixed effects must be carried 

out assuming the same variance covariance structure (see Exercise 3.9). 

Similarly, comparison of V  structures requires the same expectation model. 

These constraints of the testing procedure raise critical issues on how to 

eventually choose the two structures in linear mixed models? One way to 

circumvent such a circularity may be to recourse to robust testing procedures. 

For instance, in the case of repeated data ( )
1 i

i c ij j n
yy

≤ ≤
=  on the same 

experimental unit i , the testing procedure developed by Liang and Zeger (1986) 

allows to get rid of the uncertainty in the true variance covariance structure. The 

procedure known as GEE (Generalized Estimating Equations) is based on the 

so-called “sandwich” estimator of the sampling variance of the LS estimator β̂  

with 

 ( )' '

1 1

ˆ=
I I

i i i i i ii i
β X WX X Wy

−

= =∑ ∑ ,  (3.77) 

 
( ) ( )

( )

' '

1 1

'

1

ˆVar( ' ) '
I I

i i i i i i i ii i

I

i i ii

C β C X W X X W V W X

X W X C

−

= =

−

=

= ∑ ∑

∑
, (3.78) 

where iW  is a working matrix of weights and 
i

V  is the variance of 
i

y  which is 

replaced by a consistent estimator ( )( )ˆ ˆˆ '
i i i i i

V y X β y X β= − − .  

The simplest choice for the working matrix is 
ii nW I=  leading to OLS. As 

already seen in chapter 1, OLS provides an unbiased estimator of β  whatever 



 126

the true unknown V  is (see Exercise 3.10 for an application to the same data set 

and models as in example 3.6). However, in that case of longitudinal data, there 

is an additional important condition required to preserve the unbiasedness 

property which consists of no missing data for each subject or missing data 

patterns completely at random.  

3.3 Restricted maximum likelihood 

3.3.1 Classical presentation 

A simple example 

At first glance, the question arises as to why introducing a new procedure for 

estimating variance components given all the desirable properties of maximum 

likelihood. One way to tackle that issue is to consider the very simple example 

of estimating the variance from a N-sample of independent Gaussian 

observations ( )2~ ,
i iid

y µ σN  with expectation µ  and variance 
2σ  

Letting ( )1
/

N

ii
y y N

=
= ∑  designate the mean of the observations, and 

( )
22

1
/

N

ii
s y y N

=
= −∑ , the so-called sample variance. As shown in example 

(3.2), ( )22L , ;y− µ σ  can be written as 

 ( ) ( )
22

2 2

2
2L , ; ln 2 ln

s y
Ny
 + −

− = + + 
  

µ
µ σ π σ

σ
 

with its partial derivatives with respect to µ  and 
2σ  : 

 ( ) ( ) 22L/ / 2 /N y∂ − ∂ = − −µ µ σ , 

 ( )
( )

22

2

2 4

1
2L/ /

s y
N

+ −
∂ − ∂ = −

µ
σ

σ σ
. 

Setting them to zero yields 

 ˆ y=µ  , (3.79) 

and, for 2N ≥ ,  

 ( )
22 2 2ˆ ˆs y s= + − =σ µ . (3.80) 
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Now ( ) ( )
22

1
E E /

N

ii
s y y N

=
 = −
 ∑ , and ( ) ( )

2 21
E Var

i i

N
y y y y

N

−
− = − = σ , 

so that 

 ( ) ( )2 2ˆE 1 /N N= −σ σ  (3.81) 

As a result, the ML estimator 
2

s  of 2σ  est biased downwards and 

underestimates 2σ  with a value of the bias 
2 / N−σ  being a decreasing function 

of the sample size N .  

More generally for ( )' 2~ ,
ij id ij

y x β σN  for 1 i I≤ ≤  and 1 j J≤ ≤  where β  is a 

( )x1p vector of real valued coefficients, the ML estimator of 2σ  is  

 ( )
2

2 '

1 1

ˆˆ /
I J

ij iji j
y Nx β

= =
= −∑ ∑σ   (3.82) 

with expectation  

 ( ) ( )2 2ˆ /E N p N= −σ σ   (3.83) 

where N IJ=  and β̂  is the OLS estimator of β  and  

Clearly, the ratio /p N  is critical in this matter and the bias may be become 

very large in some particular situations (see exercise 3.11). That observation was 

at the origin of the development of this new concept of residual (restricted) 

maximum likelihood (REML).  

How to correct this bias? As shown clearly from (3.82), the issue is due to some 

inteference between the estimation of µ  and that of 
2σ . Two procedures can be 

envisioned to avoid it that prefigure the methods used later on for the general 

linear mixed model.  

 i) Factorization of the likelihood 

The principle is as follows. The likelihood is written as the product of two parts 

and only that part which does not depend on µ  is kept to estimate
2σ . To that 

respect, one introduces the one to one transformation 

 ( ) ( )*

1
',

i i N
y yy y z

≤ ≤
= ↔ = , (3.84) 
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where ( )
1 1c i i i N

z y yz
≤ ≤ −

= = −  is a vector made of 1N −  deviations from the 

average ; here the 1N −  first ones are taken but the choice of these 1N −  values 

does not matter. Due to the nature of this transformation, one can relate the 

distribution of y  to that of 
*y   

 ( ) ( )*

*

Y Y
f fy y J= , (3.85) 

where J  is the absolute value of the jacobian determinant 

( )*

1 , 1
det /m j i

i N j N
y yJ

≤ ≤ ≤ ≤
= ∂ ∂ .  

First, J  does not depend of the parameters as seen from the definition of 
*y ; 

secondly, y  and z  are independent, and thirdly, the distribution of z  does not 

depend on µ  so that  

 ( ) ( ) ( )2 2| | ,
Y Z Y

f f f yy z∝ σ µ σ , (3.86) 

or equivalently in terms of loglikelihood 

 
2 2 2

1 2L( , ; ) L ( ; ) L ( , ; ) constantyy z= + +µ σ σ µ σ ,  (3.87) 

where ( )2 2

1L ( ; ) log |
Z

fz z=σ σ , ( )2 2

2L ( , ; ) log | ,
Y

y f y=µ σ µ σ  and the 

constant being equal to log J .  

The idea behind REML consists of only using 
2

1L ( ; )zσ  to estimate 
2σ  thus 

explaining the term “residual likelihood” given by Thompson to this function as 

it literally designates the likelihood of such quantities z . There are different 

ways to compute 
2

1L ( ; )zσ . By direct specification of the distribution of z  that 

is ( )~ ,
Z

z 0 VN  with  

 ( )2

1 1
/

Z N N
NV I J− −= −σ ,  (3.88) 

one arrives at  

 ( )( )2 2 2 2

12L ( ; ) 1 ln 2 ln ln /N N Nsz− = − + − +σ π σ σ . (3.89) 

Differentiating with respect to 
2σ  gives 
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( )

( ) 2 2 41

2

2L
1 /N Ns

∂ −
 = − − ∂

σ σ
σ

 

and setting to zero gives for 2N ≥  

 ( )2 2ˆ / 1Ns N= −σ , (3.90) 

which is the usual unbiased estimator of 2σ  as already seen in (1.34).  

 ii) Treating µ  as missing (Foulley, 1993) 

If µ  were known, then the ML estimator of 2σ  would be ( )
22 2ˆ s y= + −σ µ  

whose value is always higher or equal than 
2

s . But µ  being generally unknown, 

one may think to predict its contribution to ( )
2

y − µ  by replacing that term by 

its conditional expectation ( )
2 2E ,y y −

 
µ σ  given the data. Remember that 

writing ( )
2

~ 0,1
/

y

N

− µ

σ
N can be interpreted, either as ( )2 2| , ~ , /y Nµ σ µ σN

, or as ( )2 2| , ~ , /y y Nµ σ σN . Then, using this last “fiducial” interpretation 

( ) ( )2 2 2 2E , Var , /y y Ny − = =
 

µ σ µ σ σ .  

Now the equation to solve is 
2 2 2ˆ ˆ /s N= +σ σ  that has the same solution as in 

(3.90) by maximization of the logresidual likelihood. Again, this approach 

shows that ML does not take properly into account the effect of the incertainty 

in µ  when replacing it by y  in the loglikelihood function.  

General case 

For the linear Gaussian model defined by ~ ( , )y Xβ VN , Patterson and 

Thompson (1971) proposed the following transformation: 

 ( ) ( )
1

', ' '
i i N

yy u v
≤ ≤

= ↔ . (3.91) 

where Pyu =  and ( )N
yv S I H y== −  with H  (the so called hat matrix) being 

the usual LS projector ( )' 'H X X X X
−

= .  
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By definition v  does not depend on β  but only on γ  and is the basis of the 

residual likelihood 
1

L ( ; )γ v . Two comments are worthwhile at this stage. 

1) One may question whether some information on γ  is not lost by basing 

inference only on 
1

L ( ; )γ v  and ignoring 
2

L ( , ; )β γ u . This issue has been 

somewhat controversial in the seventies and eighties. Some people argued that 

“there is no avalaible information on γ  in the absence of knowledge of β ” 

whilst others said that “this information is inextricably mixed up with the 

nuisance parameters”: see Kalbfleisch and Sprott (1970) and discussants; 

Actually, most specialists agree that there is no loss of information by doing so 

“though it is difficult to give a totally satisfactory justification of this claim” 

(McCullagh and Nelder, 1989, page 247).  

2) Vector v  has N  elements with some of them linearly dependent. To get rid 

of this redundant information, Harville has suggested to only consider a 

subvector noted 'K y  of 
X

N r−  LIN elements of v  called « error contrasts ». 

that is ( )'
N

K T I H= −  for any ( )x
X

N r N−  transformation matrix T  having full 

row rank and thus verifying 'K X 0= . A possibility consists of building K  from 

the 
X

N r−  eigenvectors of S . Let A  be this ( )x
X

N N r−  matrix, it can be 

checked that this matrix meets the conditions assigned to K  (See Exercise 3.12)  

Now, we can write the residual loglikelihood as the loglikelihood ( )L ; 'γ K y  of 

γ  based on 'K y  

 ( ) ( ) ( )
1

2L ; ' ln 2 ln ' ' ' '
X

N rγ K y K VK y K K VK K y
−

− = − + +π . (3.92) 

This expression considerably simplifies given the two following identities: 

 ( )
1

' 'K K VK K P
−

= , (3.93) 

 
11

' ' ' 'K VK V X V X X X K K
−−= , (3.94) 

where ( )1
P V I Q

−= −  as previously, and X  corresponds to any matrix formed 

by 
X

r  LIN columns of X .  
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Hence, inserting (3.93) and (3.94) into (3.92) gives 

 ( ) 12L ; ' ln ln ' 'Cγ K y V X V X y Py
−− = + + + , (3.95) 

where C  is a constant equal literally to ( )ln 2 ln ' ln '
X

N r X X K K− − +π .  

By definition of a loglikelihood this term does not matter. Most software uses in 

their computation either 

 ( ) ln 2 ln '
X

C N r X X= − −π  

or, simply, as SAS-Proc Mixed 

 ( ) ln 2
X

C N r= − π .  

In any case, formula (3.95) makes it clear that the restricted loglikelihood does 

not depend on a specific value of K  so that the choice of the projector is 

immaterial. We could have chosen as well ( )N
yv S I H y== −� ��  with 

( )' 'H X X WX X W
−

=� , W  being any positive definite matrix of known 

coefficients.  

As compared to the expression of the profile loglikelihood given in (3.30), 

 ( ) ( )2L ; ln 2 ln '
P

Nγ y V y Py− = + +π  

it turns out minus twice the restricted loglikelihood - noted often as ( )2RL ;γ y− - 

adds a term 1ln 'X V X
−  that automatically adjust for the sampling variance of 

the GLS estimator β̂  since ( ) ( )
1

1ˆVar 'β X V X
−

−= . 

Now by differentiating (3.95) with respect to γ , one has 

 
( ) 1ln '2L ; ' ln

'
k k k k

X V Xγ K y V P
y y

−∂∂ −  ∂ ∂  = + +
∂ ∂ ∂ ∂γ γ γ γ

 (3.96) 

After making simple algebraic manipulation 

 

1ln 'ln
tr

k k k

X V XV V
P

−∂∂  ∂
+ =  

∂ ∂ ∂ γ γ γ
.  

Similarly, it can be shown (see appendix 3.6) 
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k k

P V
P P

∂ ∂
= −

∂ ∂γ γ
, 

Then, (3.96) becomes 

 
( )2L ; '

tr '
k k k

γ K y V V
P y P Py

∂ −   ∂ ∂  = − 
∂ ∂ ∂ γ γ γ

. (3.97) 

If V  has a linear structure, 
0

K

l ll
V V

=
=∑ γ  with /

k k
V V∂ ∂ =γ , and knowing that 

PVP P=� , then ( ) ( )
0

tr tr
K

k k l ll
PV PV PV

=
=∑ γ  and the system of REML 

equations obtained by setting (3.97) to zero, can be written as 

 ( )0

ˆ ˆ ˆ ˆˆtr '
K

k l l kl
PV PV y PV Py

=
=∑ γ . (3.98) 

Letting  

 ( )( )tr
m kl k l

fF PV PV= =��  (3.99) 

 ( )'
c k k
gg y PV Py= = . (3.100) 

The non linear system (3.98) can be solved iteratively as a linear system at each 

iteration using 

 ( ) ( )[ ] [ 1] [ ]n n n

F γ γ g γ
+

=� .  (3.101) 

Similar comments as those about ML can be made here about REML on how to 

simplify calculations required for elements of F�  and g .  

By comparing ML equations in (3.27) with those for REML (3.98), everything 

goes off as if P  is substituted to 
1

V
−

 in the coefficient matrix. But, this 

substitution matters a lot since the expectation of the score of the restricted 

likelihood ( )L ; ' /
k

γ K y∂ ∂γ  is zero as expected from a true likelihood whereas 

that pertaining to the profile likelihood ( )L ; /
P k
γ y∂ ∂γ  cannot be nil. This is 

another distinctive characteristic of REML vs ML that can explained why 

REML is less biased than ML.  
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As far as precision is concerned, one will proceed as with ML by using the 

Hessian matrix of the restricted loglikelihood or the Fisher information matrix 

which are (see appendix 3.6) 

 

2 2

2

L 1 1
tr tr

2 2

1
               ' 2

2

k l k l k l

k l k l

V V V
P P P

V V V
y P P Py

   ∂ ∂ ∂ ∂
− = −   

∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
− − 

∂ ∂ ∂ ∂ 

γ γ γ γ γ γ

γ γ γ γ

, (3.102) 

 
2 L 1

E tr
2k l k l

V V
P P

   ∂ ∂ ∂
− =   

∂ ∂ ∂ ∂   γ γ γ γ
.  (3.103) 

The complementarity between formulae (3.102) and (3.103) prompted Gilmour 

et al. (1995) to propose for linear mixed models a second order algorithm called 

AI-REML based on the “Average” of these two “Information” matrices 

 
1

'
2

kl

k l

AI
V V

y P P Py
∂ ∂

=
∂ ∂γ γ

. (3.104) 

Example 3.7 REML equations for a single random factor model.(Example 31 

continued) 

Let us consider the same model as in example 3.1. We can make explicit the 

elements of the system Fγ g=�  as follows. The two elements of ( )0 1, 'g gg =  are 

the same quadratic forms as with ML:
2

0 'g y P y=  and 
1

' 'g y PZZ Py= , but the 

coefficients of F�  have changed; they are 

 ( ) ( )00 0 0

2tr trf PV PV P= =� , 

 ( ) ( )01 0

2tr ' tr 'f PV PZZ Z P Z= =� , 

 ( ) ( )
2

11 tr ' ' tr 'f PZZ PZZ Z PZ = =
 

� . 

The system to be solved iteratively to get the ML estimations of 
2

0
σ  and 2

1σ  is 

 

( ) ( )

( ) ( )

( )

( )

( )

( )

00 01 0 0

01 11 1 1

2 1

2 1

n n n n

n n n n

f f g

f f g

+

+

    
=    

    
    

� �

� �

σ

σ
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starting from initial values ( )2 0

0σ  and ( )2 0

1σ  which can be taken as guessed values or 

estimations of a quadratic method.  

This procedure can be illustrated by the same numerical application as in 

Example 3.1 pertaining to a two way crossclassified design with factor A as 

fixed and B as random according to the model 

 ijk i j ijky a b e= + + +µ ,  

where 
i

a  is the fixed effect of level i , ( )2

1~ 0,
j iid

b σ  and ( )2

0~ 0,
ijk iid

e σ .  

The algorithm is initiated from starting values of the parameters. For instance 

with 
2

0 10=σ 2

1 5=σ , one obtains the iterative scheme 

# 
00

f  
01

f  
11

f  
0

g  
1

g  2

0σ  
2

1σ  

1 0.201643 0.007692 0.042659 1.611703 0.143796 7.9187 1.9430 

2 0.325138 0.030465 0.178624 2.629509 0.614693 7.8910 2.0954 

3 0.326921 0.028021 0.163208 2.639224 0.560306 7.8949 2.0776 

4 0.326655 0.028288 0.164889 2.637600 0.566231 7.8945 2.0796 

5 0.326685 0.028257 0.164696 2.637778 0.566231 7.8945 2.0794 

 

As shown on this table displaying the first five iterations, the algorithm 

converges very rapidly to the same final solutions, and this holds whatever are 

the starting values chosen. According to (3.103), 12F−�  also provides an estimate 

of the asymptotic sampling variance covariance matrix of the REML estimators 

that is, for 
2

0
ˆ 7.8945=σ  and 

2

1
ˆ 2.0794=σ   

 1
6.2144 1.0662

2
1.0662 12.3250

F−
− 

=  
− 

� . 

These results can be checked using some standard software. For instance, SAS-

Proc Mixed on this data set gives 
2

0
ˆ 7.8945=σ  and 

2

1
ˆ 2.0794=σ . The difference 

between the ML and REML estimations of 
2

1σ  (0.7306 vs 2.0794 respectively) 

is striking while the residual variance 
2

0σ does not change very much (7.6546 vs 
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7.8945 respectively). From these figures, one may suspect a biased estimation of 

ML in the estimation of 
2

1σ  as corroborated by values obtained with other 

procedures as Henderson III (see Exercise 3.13).  

3.3.2 Bayesian interpretation 

For Bayesians, the natural way to treat nuisance parameters is by integration 

thus resulting in what is called a marginal or integrated likelihood (Berger et al, 

1999). In our case, the parameter of interest is represented by γ  and that of 

nuisance by β so that a general integrated likelihood is defined as 

 
( ) ( , )d

( , ) ( )d

I
f f

f

y γ y β γ β

y β γ β γ β

=

=

∫

∫ π
, (3.105) 

where dβ  is the symbol standind for 1 2d d ...d pβ β β .  

Following Harville (1974), we are considering the most commonly used default 

conditional prior that is the uniform ( ) 1β γ =π . Then the uniform-integrated 

likelihood is defined by  

 ( ) ( , , )dU
f fy γ y β γ β= ∫ . (3.106) 

Doing that, we can establish equivalence between the residual and uniform-

integrated likelihood as shown below.  

For the model ~ ( , )y Xβ VN , the density ( , )f y β γ  is  

 ( ) ( ) ( )
1/2/2 1

( , ) 2 exp ' / 2
N

f y β θ V y Xβ V y Xβ
−− − = − − − π . 

Now, in the same way as we decomposed ( )
2

1

N

ii
y

=
−∑ µ  into 

 ( ) ( ) ( )
2 2 2

1 1

N N

i ii i
y y y N y

= =
− = − + −∑ ∑µ µ ,  

we can write 

 
( ) ( ) ( ) ( )

( ) ( )

1 1

1

ˆ ˆ' '

ˆ ˆ' '

y Xβ V y Xβ y Xβ V y Xβ

β β X V X β β

− −

−

− − = − − +

− −
, (3.107) 

where β̂  is the GLS estimator of β .  
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The first term on the right-hand side does not depend on β  and as a constant can 

be factorized out. Hence,  

 
( ) ( ) ( )

( ) ( )

1/2/2 1

1

ˆ ˆ( ) 2 exp ' / 2

ˆ ˆ              exp ' ' / 2 d

NU
f y γ V y Xβ V y Xβ

β β X V X β β β

−− −

−

 = − − −
 

 − − −
 ∫

π
. (3.108) 

The expression under the sum symbol is the kernel density of ,β y γ  distributed 

as ( )
1

1ˆ , 'β X V X
−− 

  
N implying by definition that 

 ( ) ( ) ( )
1/2/2 1 1ˆ ˆ2 ' exp ' ' / 2 d 1

Xr
X V X β β X V X β β β

− − − − − − =
 ∫π . 

Consequently, the integral on the right side in (3.108) is equal to 

( )
1/2/2 12 'Xr

X V X
−−π so that 

 
( ) ( )

( ) ( )

1/21/2/2 1

1

( ) 2 '

ˆ ˆ                         exp ' / 2

N pU
f y γ V X V X

y Xβ V y Xβ

−−− − −

−

=

 − − −
 

π
. (3.109) 

and minus twice the log of this density exactly gives the same expression as in 

(3.95) with a constant ( ) log2
X

C N r= − π .  

This provides another interpretation of REML as the maximum uniform-

integrated likelihood or in short maximum marginal likelihood (MML) 

(Harville, 1974, 1977). If, in addition, one assumes a flat prior on γ  v.i.z 

( ) 1γ =π , then REML turns out to be the mode of the posterior distribution of γ  

(MAP) since ( ) ( ) ( )U
fγ y y γ γ∝π π .  

 ˆ argmax log ( )
REML γ
γ γ y∈Γ= π . (3.110) 

 

3.3.3 Numerical aspects 

Henderson-type and Harville’s algorithm 
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Without entering in details, it can be shown that the Henderson algorithm for 

computing the ML estimations of variance components can be readily extended 

to REML estimation. The formulae are as follows:  

 ( )2[ 1] [ ] [ ] [ ] 2[ ]

0
ˆ ˆ tr /n n n n n

k k k kk k
q

'
u u C

+  = + σ σ  (3.111) 

 ( ) ( )0

2[ 1] [ ] [ ]ˆ ˆ' ' ' /n n n

XN r
' 'y y β X y u Z y+ = − − −σ  (3.112) 

And, regarding Harville’s variant,  

 ( )2[ 1] [ ] [ ] [ ] [ ]ˆ ˆ / tr /n n n n n

k k k k kk k
q

'
u u C

+  = − σ η . (3.113) 

Here as previously [ ]ˆ n
β , 

[ ]ˆ n
u  are solutions to the HMME using 

2[ ]

0

nσ  and 
2[ ]n

k
σ  in 

the coefficient matrix. But 
kl

C  now represents the block corresponding to vector 

k
u  in the inverse C  of the HMME coefficient matrix defined as 

1

2 1

0

' '

' '

X X X Z
C

Z X Z Z G

−

−

 
=  + σ

. Apart from this specificity of C , formulae for 

variance-covariance components are unchanged. Regarding the residual 

variance, we have to divide by 
X

N r−  instead of N .  

These algorithms as their ML analogs share the nice property of providing non 

negative values for variance components if starting values are strictly positive.  

Again, (3.111) can be generalized to correlated random vectors of the same size 

using 

 ( )[ 1] [ ]' [ ] [ ] 2[ ]

0
ˆ ˆ tr /n n n n n

kl k l kl
qu u C

+  = + σ σ . (3.114) 

Calculation of –2RL 

Let us get back to the expression of the residual loglikelihood (RL) in (3.95)

 ( ) 12RL ln 2 ln ln ' '
X

N r V X V X y Py
−− = − + + +π  

We already proved that:  

 1 1ˆ' ' ' 'y Py y R y θ T R y
− −= − , (3.115) 
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where ( )ˆ ˆ ˆ', ' 'θ β u=  is a the solution to HMME ( )1 1ˆ' 'T R T Σ θ T R y
− − −+ =  where 

( , )T X Z=  and 
1

0 0
Σ

0 G

−

−

 
=  
 

.  

Using well-known results on determinants of partititioned matrices, we find 

 1 1 1 1' ' 'T R T Σ Z R Z G X V X
− − − − −+ = + . (3.116) 

As shown previously (3.48) 

 
1 1'V R G Z R Z G

− −= + . 

Then 

 1 1' 'V X V X R G T R T Σ
− − −= + . (3.117) 

Substituting (3.115) and (3.117) into (3.95) yields the following result valuable 

for any Gaussian linear mixed model described as ~ ( , ')y Xβ R ZGZ+N   

 
( ) 1

1 1

2RL ln 2 ln ln ln '

ˆ                         ' ' '

XN r R G T R T Σ

y R y θ T R y

− −

− −

− = − + + + +

+ −

π
. (3.118) 

As with the profile loglikelihood, this formula greatly simplifies the calculation 

of the maximum of the restricted loglikelihood function, in particular by 

resorting to HMME and their inputs-outputs. We just have to plug in REML 

estimations of R  and G  into (3.118) to get  

 ˆ ˆ2RL 2RL( , )
m REML REML

G G R R− = − = = .  

This formula can be simplified in many instances using the particular structures 

of R  and G . The only quantity raising some difficulties is 1ln 'T R T Σ
− −+ . 

These can be solved by resorting to a Cholesky decomposition 'EE  of the 

coefficient matrix 1'T R T Σ
− −+  so that 

dim1

1
ln ' 2 ln

E

jjj
T R T Σ

− −

=
+ = ∑ ε  where 

jjε  is the 
thj  diagonal element of E .  

3.3.4. Residual likelihood and testing procedures 

Fixed effects via likelihood ratio 
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In the case of ML, testing fixed effects via the likelihood ratio statistics consists 

of contrasting 2 Lm−  between a reduced model (R) and a complete (C) model 

corresponding to the null hypothesis 0H  and the union of the null and alternative 

1H  respectively and of referring to the distribution of this statistic under 0H . 

Unfortunately, it is not possible to directly extend this procedure to the residual 

loglikelihood 2R Lm−  since the reduced and complete models use different 

kinds of information. For instance, if one wants to test 0H  : « 1β 0=  » vs its 

complementary alternative 1H  : « 1β 0≠  », R uses 0S y  such that 0 0E ( )R y X β=  

while C is based on Sy  such that 0 0 1 1E ( )C y Xβ X β X β= = + . Therefore, directly 

contrasting 2R Lm−  between these two models is meaningless as far as testing 

fixed effects is concerned despite some “heuristic” justifications contrary to 

assertion (Gurka, 2006).  

To make the approach coherent, on can contrast these two models on the basis 

of the same set of residuals 0S y  as proposed by Welham et Thompson (1997) 

that is 

 

( ) ( )

( ) ( ) ( )

' '

0 0 0 0 0

1
' ' ' ' '

0 0 0 0 0 0 0 0 0

2L , ; ln 2 ln

' Var

N pβ γ K y K VK

K y K X β K y K y K X β
−

− = − +

 + − − 

π
 

and  

 
( ) ( )

( ) ( ) ( )

' '

0 0 0 0

1
' ' ' ' '

0 0 0 0 0

2L , ; ln 2 ln

' Var

N pβ γ K y K VK

K y K Xβ K y K y K Xβ
−

− = − +

 + − − 

π
 

where ( )0 0rp X=  and 
'

0K y  are 
0N p−  LIN elements of 0S y .  

Since 
'

0 0K X 0= , the first expression reduces to that of an usual restricted 

loglikelihood  

 
( )

( ) ( )

' ' 1

0 0 0 0

1

0 0 0 0

2L ; ( ) ln ln

ˆ ˆ'

Cγ K y X V X V X

y X β V y X β

−

−

− = + +

+ − −
.  (3.119) 
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where (.)C  is a function of the design matrix for fixed effects as defined in 

(3.95).  

Let ( ) '

0L , ;β γ γ K y  
�  designate the profile likelihood ( )'

0L ;
P
γ K y  of 

( )'

0L , ;β γ K y  where β�  is a GLS solution to ( )1 1' 'X V Xβ γ X V y
− −=� , it can be 

shown (See Exercise 3.14) that the appropriate “restricted” likelihood ratio 

statistics for testing 0H  :” 1β 0= ” is 

 ( ) ( )' '

0 02max L ; 2max L , ;A
γ γ
γ K y β γ γ K y = − +  

� . (3.120) 

In this formula, ( ) '

0L , ;β γ γ K y  
�  can be expressed as 

 
( )

( ) ( )

' ' 1

0 0 0 0

1

2L , ; ( ) ln ln

'

Cβ γ γ K y X V X V X

y Xβ V y Xβ

−

−

 − = + + 

+ − −

�

� �
. (3.121) 

Fixed effects via Wald’s statistic 

When V  depends of unknown parameters γ , the sampling variance of β̂  is 

computed as the inverse of the Fisher information matrix evaluated at γ  being 

equal to its (RE)ML estimate. This procedure does not take into account the 

uncertainty due to estimating γ  so that the precision of β̂  is overestimated (SE 

underestimated). Therefore, the properties of Wald’s test are affected for small 

samples. Because sampling variances are underestimated, the corresponding 

Wald statistics are overestimated and the corresponding test turns out to be too 

liberal (ie. rejects 0H  too often). That is why Kenward and Roger (1997) (later 

on referred as KR) proposed some adjustment on how to compute the precision 

and to construct the test statistic.  

KR considered a REML-based GLS estimator  

 ( ) ( ) ( )
1ˆ ˆ ˆ ˆ'β γ Φ γ X V γ y

−
=     (3.122) 

where γ̂  stands in short for ˆ
REML
γ , and  

 ( ) ( )( )
1

1
ˆ ˆ'Φ γ X V γ X

−−
=    .  (3.123) 
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The true sampling variance of (3.122) can be decomposed into 

 ( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆvar var E 'β γ β γ β γ β γ β γ β γ       = + − −         (3.124) 

This formula clearly highlights the deficiency of the usual estimator (3.123) 

since the last term is ignored and ( )ˆΦ γ  differs from the first term of (3.124) 

( ) ( )ˆvar β γ γ  =  ΦΦΦΦ , the difference ( ) ( )ˆΦ γ Φ γ−  being a definitive positive 

matrix. . In short 

 ( ) ( ) ( )ˆ ˆˆ ˆvar varβ γ β γ Φ γ   > >    .  

On the basis of (3.124) written as ( ) ( ) ( )A
Φ γ Φ γ Λ γ= + , KR build an estimator 

ˆ
A

Φ  of ( )A
Φ γ  based on the usual estimator ( )ˆΦ γ  and an estimator Λ̂  of the 

correction term Λ . In particular, since ( ) ( )ˆE Φ γ Φ γ≠    , one has to correct for 

the bias ( ) ( )ˆEB Φ γ Φ γ= −   .  

Following Kackar and Harville (1984), one can evaluate this bias via a second 

order Taylor expansion of ( )ˆΦ γ  about ( )Φ γ :  

( ) ( ) ( )
( )

( )( )
( )

1

2

1 1

ˆ ˆ

1
ˆ ˆ

2

K

k kk
k

K K

k k l lk l
k l

Φ γ
Φ γ Φ γ

Φ γ

=

= =

∂
≈ + −

∂

∂
+ − −

∂ ∂

∑

∑ ∑

γ γ
γ

γ γ γ γ
γ γ

 (3.125) 

resulting in 

 
( )2

1 1

1

2

K K

klk l
k l

W
Φ γ

B
= =

∂
=

∂ ∂
∑ ∑

γ γ
, (3.126) 

where 
kl

W  is the kl  element of ˆVar( )W γ=  

 
( )2

( )k l l k kl lk kl

k l

Φ γ
Φ PΦP PΦP Q Q R Φ

∂
= + − − +

∂ ∂γ γ
 (3.127) 

with 
1

'
k

k

V
P X X

−∂
=

∂γ
, 

1 1

'
kl

k k

V V
Q X V X

− −∂ ∂
=

∂ ∂γ γ
, 

( )2

1 1'kl

k l

V γ
R X V V X

− −∂
=

∂ ∂γ γ
. 
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One can proceed along the same lines as far as Λ  is concerned with a 1
st
 order 

Taylor expansion of ( )ˆ ˆβ γ  about ( )β̂ γ  viz.  

 ( ) ( ) ( ) ( )
1

ˆ ˆ ˆˆ ˆ /
K

k k kk
β γ β γ β γ

=
≈ + − ∂ ∂∑ γ γ γ .  

Now  

( ) ( ) ( )
1

1
ˆ

ˆ' '
k k

β γ V
X V X X y Xβ

−
−

−∂ ∂
= −

∂ ∂γ γ
, ( ) ( )1ˆVar ' 'y Xβ γ V X X V X X

−
− − = −  , 

yielding as in Kackar and Harville (1984) 

 ( )
1 1

K K

kl kl k lk l
WΛ Φ Q PΦP Φ

= =
 ≈ −
 ∑ ∑  (3.128) 

For a linear mixed model structure 
0

K

k kk
V V

=
=∑ γ , the elements 0

kl
R =  

yielding B Λ= − , ( ) ( )ˆΦ γ Φ γ Λ= +  and finally, due to ( )A
Φ Φ γ Λ= +  

 ( ) ˆˆ ˆ 2AΦ Φ γ Λ= + .  (3.129) 

Remember that W  can be consistently approximated by the inverse ( )1
J γ

−  of 

the Fisher information matrix ( ) ( )( )1 / 2 tr
m k l kl

J γ PV PV= , but one can also uses 

the observed information or the average information matrix (see formulae 3.102 

and 3.104). 

Coming back to the question of testing 
0H : 'C β 0=  against its contrary 

alternative 
1H  with 'C  being a ( )xr p  full row rank matrix, KR propose to build 

a statistic under the following form 

 
*

F F= λ   (3.130) 

where λ  is a positive scale factor lower than 1, and F  is the statistic ˆ /F W r=  

based on Wald’s pivot ( )
1

ˆ ˆˆ ˆ' ' 'AW β C C Φ C C β
−

=  adjusted for the precision of β̂  

as explained  previously.  

KR provided formulae for computing m  and λ  (see page 987). The values of m  

and λ  are calibrated by matching the first two moments of both sides of (3.130) 

such that *
F  has an approximative ( )F ,r m  distribution under the null 
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hypothesis. In addition, they impose that this distribution turns out to be the true 

one when Ŵ  reduces to the Hotelling 2
T , or in other ANOVA F-ratios 

situations.  

A typical situation coming under Hotelling’s statistic arises when testing 

0H : 'C µ 0=  under the Gaussian model ~ ( , )
i iid

y µ ΣN ; 1,2,...,i N=  (Rao, 1973). 

Then 

 ( ) ( ) ( )
0

12 min ' /
H

T Ny µ S y µ
−

= − − , (3.131) 

where ( )1
/

N

ii
Ny y

=
= ∑  and ( ) ( )( )

1

1
1 '

N

i ii
NS y y y y

−

=
= − − −∑  are the usual 

moment estimators of µ  and Σ . Then 
* 2 /F T r= λ  with ( ) ( )/ 1N r N= − −λ  

and under the null hypothesis *
F  has a ( )F ,r N r− distribution. It can be shown 

that ( )
1

2 ˆ ˆˆ ˆ' 'V 'T W µ C C µ C C
−

 = =    where µ̂ y=  and ( )ˆ ˆV / Nµ S= .  

In any case, the proposed adjustement improves the usual asymptotic 

approximation of precision of estimations of fixed effects and a better 

adequation between the nominal and actual alpha- levels than with the Wald 

Chi-square asymptotic test and the non-adjusted F-type procedures for small 

samples. Brown and Prescott (2006) mentioned a good behaviour down to 5 

subjects per treatment group. 

From a practical point of view, this procedure is now implemented in SAS-Proc 

Mixed using the option DDFM=KENWARDROGER within the MODEL 

statement.  

Example 3.8 Testing period by time interaction on repeated data 

The small data set chosen to illustrate the KR adjustement and Hotteling’s 

testing procedure is part of a planified experiment on skin biophysical 

parameters (here skin capacitance) recorded on 8 Caucasian young and non 

pregnant women at 6 occasions: two successive 24h periods with three 

measurements every 8 hours in each period (Latreille et al., 2006). One of the 
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objectives of such studies is to test the Circadian rythmicity i.e. whether the skin 

properties show the same pattern from one period to the other.  

Table 3.6: Records on 8 subjects measured at 6 occasions (period by hour 

combination) 

Subject 11 12 13 21 22 23 

1 840 855 825 795 855 790 

2 785 760 710 770 735 695 

3 650 650 685 565 580 535 

4 695 685 740 665 675 670 

5 800 710 675 660 620 670 

6 730 745 710 765 735 700 

7 720 615 595 470 570 410 

8 805 755 735 690 675 665 

 

The model can be written using the same notations as in (3.131) ( )
1 6i c it t

yy
≤ ≤

=

with ( )
1 6c t t

µ
≤ ≤

= µ  and ( )
1 6,1 6m st s t

Σ
≤ ≤ ≤ ≤

= σ . Let t jk=µ µ  where j  stands for 

period and k  for hour within period, testing the period x hour interaction 

reduces to 
0H : 'C µ 0=  with 

 
1 0 1 1 0 1

'
0 1 1 0 1 1

C
− − 

=  
− − 

. 

From the data we can compute y  and S . Here, we have 

 ( )' 753.125 721.875 709.375 672.500 680.625 641.875y =  ; 

The diagonal elements of S  are : 

( )4156.6964 5556.6964 4260.2678 12307.1428 8917.4107 13635.2679  

The off diagonal elements , under a correlation matrix form, are : 

1 0.7878 0.4851 0.6024 0.6302 0.6225 

 1 0.8671 0.9076 0.9404 0.9018 

  1 0.8032 0.8600 0.9774 

   1 0.8947 0.9593 

    1 0.8588 

     1 



 145

Then, we can compute 2
T  from [ ]

12 ' ' 'T Ny C C SC C y
−

= . Here 8N =  and 2r =  

so that  

13.125
'

26.250
C y

 
=  

− 
, 

554.4084821 229.1294643
' /

229.1294643 584.5982143
NC SC

 
=  
 

 and  

2 / 1.1793T r =  which is equivalent to the non adjusted F  statistic ˆ /W r . By 

definition, the scale parameter is equal to ( ) ( )/ 1N r N= − −λ  that is here 

6 / 7=λ  so that 
* 1.0108F F= =λ . This has to be compared to a Fisher 

distribution ( )F ,r N r−  with 2r =  and 6N r− =  degrees of fredom resulting in 

a P-value of 0.42.  

On the other hand we can view this test in a purely mixed model context as 

ijk jk ijky = +µ ε  with jkµ  being the fixed effect part and ijkε  being the residual 

term. In turn jkµ  can be classically decomposed into jk j k jk= + + +µ µ α β γ  

where µ  corresponds to a mean, jα  to a period j  effect, 
k

β  to a time k  effect 

and jkγ  to a period j  by time k  interaction effect. The resulting variance 

covariance of the residual terms has the so called “unstructured’ form and can be 

written as 
8V I Σ= ⊗  when data sorted by subject and time x period 

measurement within subject. Testing that 0jk =γ  can be easily carried out under 

SAS-Proc Mixed using the following code: 

proc mixed data=skin.facehydra ; 

class individual period time; 

model face=period time period*time/solution ddfm=kenwardroger chisq; 

repeated/sub=individual type=UN; 

run; 

The ouputs for “Type 3 tests of fixed effects” indicate a F statistics of 1.01 and a 

P value of 0.4185 for a F distribution with 2 and 6 degrees of freedom indicating 

a perfect agreement with the Hotelling exact testing procedure as far as the 

statistic and its true distribution are concerned. This is especially clear as the 

unadjusted analysis (without the option ddfm=kr) gives a value of the F statistic 
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equal to 1.18 that is exactly our ˆ /W r  term and refers to a F distribution with 2 

and 7 degrees of freedom giving a P-value of 0.3619.  

Variance covariance structures 

As pointed out earlier, testing for mean and variance structures should be carried 

out separetely. In particular, comparison of V  structures requires the same 

expectation model. Because misspecification of the mean model may pollute 

estimation of V , it is usually recommended to start comparison of V  structures 

with the so called maximal model i.e., the most elaborate model we can 

conceive on the subject-matter considerations. This can be in some special 

designed experiments (treatment, blocks, fixed time measurements), the 

saturated model. But in many instances, involving e.g., a lot and a mixture of 

discrete and continuous covariates, setting the maximal model can be a 

complicated task and there will be no objective rule to build it. Remember, we 

can also iterate between the mean and variance structures comparison stages 

starting e.g., with selecting an elaborate mean model using when possible a non-

parametric estimation of V  based on a robust type approach and then switch to 

comparing different V  structures.  

In any case, given a maximal for the mean, we can compare models for the 

variance using the REML-based likelihood ratio test based on contrasting 

maximized restricted loglikelihoods of the two models 

 
0

2

, , dim( ) dim( )H
2RL 2RLR m C m C R

d
−= − + →λ χ , (3.133) 

which, under the reduced model, has an asymptotic Chi-square distribution with 

degrees of freedom equal to the difference between the number of parameters 

determining the variance structure under the complete (C) and reduced (R) 

models respectively.  

Two comments are worthwhile at this stage:  

a) We could have used the classical likelihood as well since both being 

likelihood functions have the same limiting distribution for λ . However 
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the RL should be preferred as its actual rejection level is closer to the 

nominal one than for the classical likelihood.  

b) As in the case of compaison of mean models, the LR applies only if the R 

and C models are nested viz. that R is a special case of C. 

Example 3.9. Comparing variance structures for repeated data. Example 3.8 

continued 

For instance, in the repeated data example (3.8) we can compare the 

unstructured (UN) V model vs the “intra class” or “compound symmetry (CS)” 

V model such as ( )2

6 6
1

i
V I J= + −  σ ρ ρ  assuming a constant variance 

2σ  

across time occasions and a constant correlation ρ  between pairs of 

measurements. The likelihood ratio test is 469.6 425.1 44.5= − =λ . This value 

should be compared with a Chi-square of 13 degrees of freedom (15 - 2 for the 

UN and CS models respectively) yielding a P value of 10-7 thus indicating that 

the CS assumption does not adequately fit the data. For more details about the 

comparison of covariance structures, see e.g. Wolfinger (1993), Verbeke G. and 

Molenberghs G. (2000) and West et al. (2007).  

Notice that in this simple case 2RL
m

 can be simply computed from 

 ( ) 1log 2 ln ln ' 'N p V X V X y Py
−− + + +π  (see 3.95) 

using the appropriate estimation of V  under the two models.  

Actually, the standard theory for the distribution of the likelihood ratio statistic 

under the null hypothesis does not always apply. There are some complications 

due when the null hypothesis specifies parameter values which are on the 

boundary of the parameter space. For instance, we may like to test whether we 

need a random intercept in a model or equivalently that 
2

0 1: 0H =σ  against 

2

1 1: 0H >σ  with zero being obviously a lower bound for the values of 
2

1σ . The 

general theory of such testing procedures has been developed by Self and Liang 

(1987) and Delmas and Foulley (2007), and some of its application to mixed 
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models for longitudinal data presented by Stram et Lee (1994, 1995), Verbeke 

and Molenbergs (2003) and Zhang and Lin (2008).  

To practically illustrate this issue, let us consider the simple random intercept 

model mentioned before ( )2 2

1 0~ , '
N

y Xβ ZZ I+σ σN  with the corresponding test 

2

0 1: 0H =σ  vs 
2

1 1: 0H >σ . The LR statistic can be written in short as: 

 2 2
R C

RL RL= − +λ , (3.134) 

where 2
0

2 2

1 00
Max RL( 0, ; )

R
RL y

>
= =

σ
σ σ  and 2 2

1 0

2 2

1 00, 0
Max RL( , ; )

C
RL y

≥ >
=

σ σ
σ σ .  

By blindly applying the result in (3.133), we infer that under 
0H , λ  has an 

asymptotic Chi-square distribution with 1 degree of freedom. But this claim is 

wrong. Actually, it is possible that under the complete model, the REML 

estimation 
2

1σ  is going to be 0 so that 
C R

RL RL=  and 0=λ . How often can this 

happen? Under 
0H  and in asymptotic conditions, this will happen half time due 

to the normal asymptotic distribution of the unconstrained REML estimator 

about its true value, here 0. Therefore, the correct distribution we have to refer 

to (3.134) is a 50:50 mixture of a Dirac probability mass in 0 (sometimes noted 

as a chi-square with 0 degrees of freedom 
2

0χ ) and of a chi-square with 1 degree 

of freedom 
2

1χ .  

 2 2

0 1
1 / 2 1 / 2→ +λ χ χ

L
. (3.135) 

Now, what does it imply making the right vs wrong decision? How often do we 

reject 
0H  when it is true? It is rejected when i) λ  is positive which occurs with 

probability 1/ 2 , and ii) given it is positive, when λ  is higher than a given 

threshold s  so that 1/ 2Pr( )s≥ =λ α , where α  is by definition the significance 

level of the test. This implies that s  must be computed as 

 
2

1Pr( ) 2s≥ = αχ , (3.136) 

i.e. 2

1,1 2s −= αχ  being the ( )1 2− α quantile of the chi-square distribution with 1 

degree of freedom.  
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Practically, since the true threshold is lower than the naïve one, this means that 

the appropriate LRT will reject more often the null hypothesis than the naïve 

one which is therefore too conservative. As far as the P-value, it should be 

calculated as 
2

11/ 2Pr( )
obs

≥χ λ  that is half the value of the naive one.  

The case one vs two correlated random also deserves some attention. This 

corresponds to the following linear mixed model:  

 
1 1 2 2y Xβ Z u Z u e= + + + , (3.137) 

where X , 
1Z  and 

2Z  are known ( )xN p , ( )xN q  and ( )xN q  incidence 

matrices; β  is the ( )x1p vector of fixed effect, 
1u , 

2u  are the two ( )x1q vectors 

of random effects and e  is the ( )x1N  vector of residuals independent of 
1u  and 

2u . It is assumed that ( )1 2, 'u u u=  has a centered Gaussian distribution with 

variance 

 

2

1 1 12

2

2 12 2

V
q q

q q

ar
u I I

u I I

  
=        

σ σ

σ σ
,  

which can be written in condensed notations as ( )var
q

u I= ⊗ΣΣΣΣ  where  

2

1 12

2

12 2

 
 
 

σ σ

σ σ
Σ =Σ =Σ =Σ = . Similarly, e  is assumed ( )2

0~ 0,
N

e IσN .  

This is a common model in longitudinal data analysis as already seen in 

examples (1.6) and (3.6). 

We want to test 
2

1

0

0
:

0 0
H

 
 
 

σ
Σ =Σ =Σ =Σ =  with 

2

1 0>σ  by construction vs 

2

1 12

1 2

12 2

:H
 
 
 

σ σ

σ σ
Σ =Σ =Σ =Σ =  with i) 

2

2 0>σ  and ii) 
2 2 2

1 2 12 0− ≥σ σ σ  which is equivalent to 

ΣΣΣΣ  being either positive-definite ( ii strictly positive) or positive-semidefinite (ii 

positive or nil).  



 150

Now, if as previously one relies on the LR statistic 2 2
R C

RL RL= − +λ , its 

asymptotic distribution under 
0H  is no longer a chi-square with 2 (3-1) degrees 

of freedom but a 50:50 mixture of a chi-square with 1 degree of freedom 
2

1χ . 

and of a chi-square with 2 degrees of freedom 
2

2χ .  

 2 2

1 2
1 / 2 1 / 2→ +λ χ χ

L
. (3.138) 

Again, besides the theory establishing that result, we can try to figure out how 

the first component 
2

1χ  arises. This component resorts from a submodel having 

a variance covariance matrix depending on 2 parameters only. However, this 

cannot be 

2

1

2

2

0

0

 
 
 

σ

σ
Σ =Σ =Σ =Σ = , since no REML estimation can yield 

12
ˆ 0=σ , this 

event having a nul probability of occurrence. Actually, the only submodel that 

can yield such a component is the one in (3.137) having the two random effects 

proportional 
2 1u u= δ , thus resulting in 2

1 2

1 
 
 

δ
σ

δ δ
Σ =Σ =Σ =Σ =  which is a positive-

semidefinite (psd) matrix (condition 
2 2 2

1 2 12 0− =σ σ σ ).  

The 1 vs 2 random effect case can be extended in the same way to m  vs 1m +  

with 0 :
0

mm
H

Σ 0
Σ

0

 
 
 

====  vs 
, 1

' 21

, 1 1

:
mm m m

m m m

H
Σ Σ

Σ
Σ

+

+ +

 
 
 σ

==== . Under 
0H , the LR 

statistic is now asymptotically distributed as 
2 2

11/ 2 1 / 2
m m++χ χ .  

In practice these properties presupposed that the REML (or ML) algorithm used 

for estimating Σ  can provide solutions which are either pd or psd matrices. This 

has to be checked as some software reduces computation of REML estimates to 

only pd Σmatrices.  

Other kinds of tests such as m  vs m k+  random effects do not resort to a simple 

mixture of chi-squares but to complex mixtures of distributions, the 

specification of which is beyond the scope of this book.  
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Corresponding procedures based on the score test were considered by Verbeke 

and Molenbergs (2003) and Zhang and Lin (2008).  

 

3.3.5. Residual likelihood and Information criteria 

It may happen that models compared are not nested. For instance, in the analysis 

of repeated data, one might be interested in contrasting a random intercept 

model with a constant correlation 
st

r r=  among any pair of measurements 
is

y  

and 
it

y  made on the same individual i , and a first order autoregressive model 

with a correlation equal to  
s t

st
r

−
= ρ . Obviously, the first model is not a special 

case of the second one. A simple way to handle that is to recourse to information 

criteria. 

Historically, the first and the most popular one is the Akaike Information 

Criterion. This criterion is derived from a measure of the Kullback-Leibler 

distance ( ),
m

I f g  between the true model generating the data with distribution 

( )f y  and a class of candidate model with distribution ( )|
m m

g y θ  

 ( ) ( ) ( ), log log |
m f f m m

I f g E f E gy y θ = −      (3.139) 

where (.)fE stands for an expectation taken with respect to the true distribution 

( ).f  generating the data.  

When comparing two different candidate models, only the last term matters as 

the first one is common to both of them.  

Comparing two different candidate models relies on 

( ) ( ) ( ) ( ), ' ' ' ', , log | log |
m m m m f m m f m m

I I f g I f g E g E gy θ y θ   ∆ = − = −    ,  

so that only the last term matters. 

The true value 
m
θ  is unknown but it can be estimated consistently by its MLE 

( )ˆ
mθ y  based on the observed data y  and one may think to replace 

m
θ  by its 
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MLE ( )ˆ
mθ y  and compare models on ( )ˆlog |f m mE g y θ −

 
. However if one 

model is nested into the other one '⊃M M , the difference  

( ) ( ) ( ) ( )' ' ' ' '
ˆ ˆˆ ˆ, , log | log |m m f m m f m mI f g I f g E g E gy θ y θ   − = −

   
  

will always be negative or nil as ( ) ( )' '
ˆ ˆlog | log |m m m mg gy θ y θ≥ and preference 

will always be given to the larger model.  

This too optimistic view in favour of the larger model is due to the fact that 

( )ˆlog |g y θ  (with notation ignoring model subscript) utilizes the data twice: 

once to get ( )θ̂ y  and a second time in evaluating the fitting ability of the model 

by the observed loglikelihood ( )( )ˆlog |g y θ y .  

To avoid this double use of the data, one may consider the following quantity 

 ( ) ( )( ){ }2log |AI f y E g dyy y θ y = − ∫ �
�   

or, in short 

 ( )( )ˆ2log |y yAI E E g y θ y = −
 �

�   (3.140) 

where the expectations have to be taken with respect to different and 

independent sample spaces: ( y ) and ( y� ) having the same true distribution. The 

multiplication factor 2 in (3.140) is introduced by convenience so that quantities 

are on a deviance (or likelihood ratio) scale. Then, AI  can be consistently 

estimated by 

 ( )( )ˆ2log | Penaltyg y θ y− +�   (3.141) 

where  

 ( )( ) ( )( )ˆ ˆPenalty 2log | 2log |y y yE g E E gy θ y y θ y   = − − + −
   � �

� �   

If one assumes that the observations 
i

y  1,..,i N=  are iid and that 
0(. | )f g= θ  

where 
0θ  is a member of the parametric class of candidate models so that 
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consistency of the MLE estimator guarantees the convergence of ( )θ̂ y  to 
0θ . 

Then it has been shown that Penalty 2k=  and one obtains in (3.141) the Akaike 

Information Criterion (Akaike, 1973) for comparing models on the basis of the 

following value 

 
max2 2AIC L k= − + , (3.142) 

where 
maxL  is the maximised loglikelihood of the candidate model and k  is the 

number of unknown parameters of this model.  

The empirical idea behind (3.141) is to compare models on account of their 

fitting ability (
max2L− ) but with a penalty term ( )2k  against models with too 

many parameters thus allowing to evaluate their predictive ability more fairly. 

This is especially clear due to the expectations taken with respect to two 

different data samples: ( y ) and ( y� ) acting as testing and learning samples 

respectively.  

The value k  for the penalty terms relies theoretically on the assumption that the 

true distribution generating the data belong to the class of candidate models. 

However, this assumption can be relaxed leading to the so-called Tageuchi 

Information Criterion (TIC) (Takeuchi, 1976)  

 ( )1

max2 2TIC L tr KJ
−= − +  

where 
( )log |

f

g y
Var

θ
K

θ

∂ 
=  

∂ 
 is the variance of the score function and 

( )2 log |

'
f

g y
E

θ
J

θ θ

 ∂
= −  

∂ ∂ 
 the Fisher information matrix with expectation and 

variance taken with respect to the true density.  

Estimation of ( )1
tr KJ

−  will rely on the true density replaced by ( )0|g y θ�  with 

0 argmin ( , (. | ))
k

I f gθ θ=�  the best approximation in the parametric class of 

candidate models to the true model (sometimes called quasi true model). Notice 
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that if the true model is a candidate model ( )ˆVarK J θ J=  and 

( ) ( )1 dimtr KJ θ
− = .  

But the accuracy of estimation of this penalty term is generally poor then 

precluding its direct use in practice as compared to the simple AIC penalty. To 

overcome these limitations, bootstrap versions of the TIC penalty have been 

proposed (Shang and Cavanaugh, 2008).  

If we want to compare models on their variance covariance structures V  on a 

REML basis, the models must have the same fixed effects and the maximized 

residual loglikelihood 
maxRL  should be substituted to 

maxL  in (3.142) with k  

being now the number of parameters specifying V . AIC is negatively biased 

and thus tends to favour models with high dimension. There have been several 

propositions to adjust for this underestimation of AIC due to small sample size. 

For instance, Hurviwch and Tsai (1989) proposed a sample size 
*

N  corrected 

version of the AIC known as AICC defined as  

 ( )* *

max2 2 / 1AIC L kN N k= − + − − , (3.143) 

thus implying an additional penalty term since 

 ( ) ( )*2 1 / 1AICC AIC k k N k= + + − − , 

which can be applied as soon as 
* / 40N k < .  

Another way to correct for overfitting is to recourse to Schwartz’s information 

criterion usually called BIC as it refers to an approximative Bayes factor (BF) 

(see Exercise 3.15), 

In Bayesian inference, if we want to confront two hypotheses 
0H  and 

1H  

corresponding to the models 
0M  and 

1M  respectively, we can rely on the ratio 

of their posterior probabilities 
( )
( )

0

1

Pr |

Pr |

y

y

M

M
.  
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Since  
( )
( )

( )
( )

( )
( )

0 0 0

1 1 1

Pr | | Pr

Pr | | Pr

m

m
=

y y

y y

M M M

M M M
 (3.144) 

we can also compare models on the ratio of the marginal distributions of the data 

( ) ( ) ( )| | ,m f dπ= ∫y y θ θ θM� M  under these two models (Jeffreys, 1961, page 

248) known as the Bayes Factor  

 
( )
( )

( )
( )

( )
( )

0 0 0

01

1 1 1

| Pr | Pr
/

| Pr | Pr

m
BF

m
= =

y y

y y

M M M

M M M
  (3.145) 

BF can then be viewed as the ratio of the posterior odds to the priors odds and 

thus as a criterion for measuring the evidence for 
0M  against 

1M  brought by 

the data over the relative prior information on the models.  

Computing the marginal likelihood remains a difficult task  involving various 

techniques (see eg Kass and Raftery, 1955; Friel and Wyse, 2012). One can 

resort to integral approximations such as the Laplace' method which yields the 

basis for BIC (Le Barbier and Mary-Huard, 2006).  

Expanding ( ) ( ) ( )|l gθ y θ θ= π  around the posterior mode (MAP) θ� and 

exponentiating leads to  

 ( ) ( ) ( ) ( ) ( )( )/2 ½ 12 | 1 ( )
k

m g o Ny y θ θ Λ θ
−= +� � �π π�  (3.146) 

where ( )θπ , ( )|g y θ  represent the prior density and likelihood respectively and 

( )
( )

1
2

'

l θ
Λ θ

θ θ

−
 ∂

= − 
∂ ∂ 

. 

The next step is to replace the MAP θ�  by the MLE θ̂  and ( )Λ θ  by the inverse 

of the Fisher information matrix ( )I θ  leads to (on the deviance scale) 

( ) ( ) ( ) ( )

( ) ( ) ( )½

1

ˆ ˆ2log 2log | 2log log 2

ˆ                      log log

m g k

k N o N

y y θ θ

I θ
−

   − = − − −
   

 + + +
 

π π�
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where ( )1I θ = ( ) / NI θ  is the Fisher information matrix for a single observation 

in the N  sample of iid observations.  

In order to get the BIC expression, we have to make further assumptions on the 

constant term: ( ) ( ) ( )1
ˆ ˆ2log log 2 logkθ I θ   − − +

   
π π . If we assume that a priori 

( )ˆ ˆ~ ,nθ θ V θ 
 

N  where ( ) ( )1ˆ ˆV θ I θ
−=  is the asymptotic variance of the MLE 

θ̂  such that ( ) ( )
1

1nV θ I θ
−

=    , then ( ) ( ) ( )
½

/2

1
ˆ ˆ2

k
θ I θ

−
=π π the constant term 

cancels out and we obtained the well known expression for BIC.  

 ( )max2 logBIC L k N= − + . (3.147) 

Notice the special form (so called "Unit Prior Information") of the prior 

distribution of θ  centered on the ML estimation θ̂  and having a variance equal 

to the inverse of the expected information matrix provided by a single 

observation. The expression of this variance is the analog of the variance 

( )
12 'gσ

−
X X  of Zellner’s g prior for g N=  in the case of the linear model.  

The question arises on what N  (say 
*

N ) should be plugged in (3.147) and also 

in (3.143).  

First, if data were independent, on should take 
*

N N=  the number of 

observations for ML and 
*

X
N N r= −  for REML respectively where 

X
r  is the 

rank of X . But, in practice they are not and the 
*

N  should take care of that. At 

the limit, if there are I  subjects with their measurements perfectly correlated, 

then 
*

N I= . This in fact what some people (Gurka, 2006) recommend both for 

ML and REML and what SAS Proc Mixed does for computing BIC. In the first 

option, the penalization is too strong whereas it is too small in the second one. 

Methods have been proposed to calculate an effective sample size which takes 

into account the real covariance or correlation structure of the data (covariance 

i
V  and correlation 

i
R  matrix for subject 1,2,..,i I= ). One possibility is based on 
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the information matrix ' 1

1 i i

I

n i ni
1 V 1

−

=∑  pertaining to the intercept in the 

corresponding GLS equations. After standardization for scale effects, one would 

replace N  by ' 1

1 i i

I

e n i ni
N 1 R 1

−

=
=∑  ie the sum of the elements of the inverse of 

the correlation matrix by subject cumulated over subjects (Jones, 2011). 
e

N  lies 

between its boundary values 
e

I N N≤ ≤  which are attained for zero and perfect 

correlations respectively (see exercice 3.16).  

At the opposite of AIC, BIC tends to select too parsimonious models due to a 

more stringent penalty. That is the reason why some people prefer to use AIC 

rather than BIC for covariance model selection (Fitzmaurice et al., 2004, page 

177). On the positive side, one can notice that due to the penalty term involving 

( )*log N , BIC adjusts automatically for the phenomenon known as “dimishing 

significance of a fixed P-value” when sample size increases (Good, 1992). 

Finally it should be also noted that BIC is consistent with respect to the quasi 

true model whereas AIC is not. This means that for large sample size the 

candidate model selected by BIC will be the correct model with a probability 

tending to one. In addition, AIC and BIC do not exactly meet the same purpose. 

As seen in the previous derivations, the primary objective of AIC is a predictive 

one while BIC is devoted to evaluate a correct description of factors affecting 

the outcomes of the candidate models. For more details and technicalities, the 

reader can refer to the very comprehensive review of selection of linear mixed 

models published by Mueller et al. (2013).  

Example 3.10. Comparing variance structures for repeated data via 

information criteria. Example 3.9 continued 

In the repeated data example (3.8) and (3.9), we would like to compare the 

following variance covariance structure by its increasing order of complex 

 i) Intra-class (or Compound symmetry) where ( )2

6 6
1

i
V I J= + −  σ ρ ρ   
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with ( )2 2 2

1 1 0/= +ρ σ σ σ , and 
2 2 2

1 0= +σ σ σ , 
2

1σ  and 
2

0σ  being the between and 

within subject components of variance 

 ii) First order autoregressive (AR1) where ( )| |2

, 
s t

i i i i sthV H H
−

= = =σ ρ   

with ( )| |

, 
s t

i i sthH
−

= = ρ  since measurements are taken over constant periods of 

time (every 8 hrs) 

 iii) Same as in ii) but with heterogeneous variances at each time 

occasion (ARH1) where ( )| |s t

i s tV
−

= ρ σ σ  

 iv) Unstructured where ( )i st s t
V = ρ σ σ as already seen in example (3.9).  

Information criteria computed are AIC, AICC and BIC according to formulae 

(3.142), (3.143) and (3.147) respectively. 
*

N  in AICC is taken as 
*

X
N N r= −  

that is here 
* 48 6 42N = − = . Two BIC values (indexed by 1 and 2) are reported 

according to whether 
* 8N I= =  (the number of subjects) or 

* 42N =  as in 

AICC. 

Table 3.7 . Comparison of covariance structure models based on AIC, AICC and 

BIC for the skin data 

Model k -2RL AIC AICC BIC1 BIC2 

Intraclass 2 469.6 473.6 473.9 473.7 477.0 

AR1 2 471.1 475.1 475.5 475.3 478.6 

ARH1 7 461.6 475.6 478.9 476.2 487.8 

UN 21 425.1 467.1 513.3 468.8 503.6 

This example deserves some attention as it illustrates very well how contrasted 

can be the results of comparison based on such information criteria. According 

to AIC and BIC1, the best model is the unstructured one, whereas for AICC and 

BIC2, this is the intraclass one. Again as expected, AIC chooses the most 

complex model whereas AICC and the BIC2 version select the simplest one.  

3.3.6 ML vs REML 
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There has been a long debate since the beginning about the relative merits of 

ML vs REML for estimation and model selection in the presence of nuisance 

parameters (Lascar and King, 2001). As stated in the introduction, maximum 

likelihood procedures are a turning point in the history of variance components 

estimation between quadratic moment vs likelihood principle based procedures.  

Both ML and REML are asymptotically equivalent but the latter shares common 

properties with previous methods. First for balanced settings, REML and 

ANOVA estimators are identical provided ANOVA estimations are within the 

parameter space.  

Secondly, MINQUE when iterated (abbreviated as I-MINQUE) is based on the 

same equations as REML (formula 3.101) so they are equivalent provided I-

MINQUE solutions are within the parameter space. In addition, it has been 

shown that I-MINQUE is consistent and asymptotically normal and we know 

that MINQUE does not require normality of data. This explains why REML 

shares the same robust properties for non Gaussian data although some 

adjustement has to be made on the information matrix (Jiang, 2007). In 

connection to that, it is not suprising that REML equations can also be 

interpreted also in terms of quasi-likelihood or modified profile likelihood 

equations. Finally, REML is also a first step towards Bayesian estimation of 

variance components. We also have seen that Wald’s statistics for fixed effects 

can benefit from using REML estimations of variance components.  

In addition, REML does not suffer some inconsistency properties observed with 

ML (see Exercise 3.11 about the Neyman-Scott problem) that occurs when the 

dimension of fixed effects increases grows as fast as the sample size (Jiang, 

2007, page 40). 

For all these theoretical features, REML should be preferred to ML in most 

applications although it might be more demanding computationally than ML for 

very large data sets. But, even in such cases, the choice has already been made 

to use it contrarily to what happened in other areas: see e.g. the interesting 
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example of the animal breeding community (Meyer, 1990; Mrode and 

Thompson, 2005).  

3.4 Exercises 

3.1 Consider a one way ANOVA model  ,  1,..., , 1,...,ij i ij iy a e i I j n= + + = =µ  

where ( )2~ 0,
i iid a

a σ , ( )2~ 0,
ijk iid e

e σ  and i ija e⊥ . 

 1) Specify the analytical expressions of ( ) ( ),SSA R a R= −µ µ  and 

( )' ,SSE R ay y= − µ  as functions of ijy , 
0 1

J

i ijj
y y

=
=∑ , 

00 01

I

ii
y y

=
=∑ , and 

ijij
N n=∑ .  

 2) Give the formulae for the expectations of SSA  and SSE  under the 

true random model and for the moment estimators of 
2

e
σ  and 

2

a
σ  based on the 

mean squares ( )/ 1MSA SSA I= −  and ( )/MSE SSE N I= − .  

 3) Compute 
2ˆ
e

σ  and 
2ˆ
a

σ  from the following small data set 

A-levels n  y∑  2
y∑  

1 3 36 648 

2 4 96 2512 

3 2 12 80 

 

Let ( )
1c i i I

aa
≤ ≤

=  and assume now that random effects are correlated with 

( )2~ 0,
a

a Pσ  where ( )m ij ij
pP =  is a known ( )xJ J symmetric definite-positive 

matrix such that 1ijp =  if i j= , and 0 1ijp≤ <  for i j≠ . Such a situation arises 

for instance when levels of A are genetically related. Show how to change

( )E MSA  to take into account this new assumption ?  
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 4) Show that in the balanced case /
i

n n N I= = , i∀ , the expression of 

( )E MSA  reduces to ( ) ( )2 21
e a

E MSA n p= + −σ σ  where p  is the average value 

of the non diagonal elements of P .  

 5) Infer from this how much relative bias in ( )2 2 2

*
ˆ ˆ ˆ/

a a a
B = −σ σ σ  results 

from ignoring elements of P  in estimating 
2

a
σ  by 

2

*
ˆ

a
σ .  

3.2 The same model as in 1) is envisioned but now we consider the following 

quadratic forms 
0 'SS y My=  and 

1 ' 'SS y MZZ My=  where /
N N

NM I J= − , 

N
I  being the identity matrix of order N  and N N N

'J 1 1= , the ( )xN N matrix 

made of one’s.  

 1) Specify the analytical expressions of 
0SS  and 

1SS  as functions of N

, 2

ijij
y∑  and 

00 01

I

ii
y y

=
=∑  on the one hand and of 

i
n , ( )1

/
J

i ij ij
y y n. =

= ∑ , and 

( ) /ijij
y y N.. = ∑  on the other hand.  

 2) How would you interpret 
0SS  and how does 

1SS  differ from SSA? 

 3) Derive the analytical expression of the coefficients of 
2

e
σ  and 

2

a
σ  in 

( )0E SS  and ( )1E SS . 

 4) Check that the results obtained are the same as with those of the 

ANOVA decomposition in the balanced case i.e. 
i

n n= , i∀ .  

 5) More generally, let us define ( )
2*

1 . ..
I

i ii
SSA k y y

=
= −∑  where 

i
k  is 

any positive weighing scalar. Show that 
*

SSA  reduces to SSA  for 1
i

k =  and 

derive the coefficients 
2

e
σ  and 

2

a
σ  in ( )*

E SSA  with the special cases of 

21, ,
i i i

k n n= .  

 6) Apply the previous results to the data set shown in Exercise 3.1.  
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3.3 In the mixed linear model 
0

K

k kk
y Xβ Ζ u

=
= +∑  where 2 '

0

K

k k kk
V Ζ Z

=
=∑ σ  

 1) Show that the sampling variance of the estimation 

( )0

2ˆ /
XZ

SSE N r= −σ  of the residual variance 
0

2σ  is ( ) ( )0 0

2 4ˆ 2 /
XZ

Var N r= −σ σ  

where ( ),
XZ

r rank X Z=  and ( )' ,SSE Ry y β u= − .  

 2) Derive an unbiased estimator of ( )0

2ˆVar σ  

3.4 In the toy example shown in the technical note, derive the sampling 

variances (and SE) of the H-III estimates of variance components 
2ˆ
e

σ , 
2ˆ
c

σ  and 

2ˆ
b

σ  under the assumption that random effects are normally distributed and true 

values of variance components are 
2 800
e

=σ , 
2 100
c

=σ  and 
2 200
b

=σ  

respectively. 

3.5 Consider the following data set on pelvic opening (cm2) recorded on heifers 

according to a two way cross classification with A being “region x origin” (4 

levels) and B “sire” of these heifers (6 levels). 

 1) Estimate variance components under a two factor (say A and B) 

mixed linear model with interaction, assuming A being fixed, B and AxB 

random.  

 2) Same question as in 1) with all effects being random. 

 3) Same question as in 1) with an additive model. 

 4) Same question as in 2) with both effects being random in applying 

four choices of quadratic forms proposed in the technical note.  

 5) Summarize the results and draw conclusions.  

 

 

 



 163

 Table. Distribution of pelvic opening records according to region x 

origin (A) and sire (B) of heifers 

 

A B n  y∑  

1 1 3 987.3 

1 2 2 679.8 

1 3 1 341.0 

1 5 2 651.0 

1 6 3 907.0 

2 1 4 1239.0 

2 2 3 969.0 

2 4 3 915.0 

2 5 5 1695.5 

2 6 4 1199.3 

3 1 2 710.0 

3 3 2 628.0 

3 4 1 333.3 

3 5 2 714.0 

3 6 2 607.8 

4 1 1 346.5 

4 2 2 573.0 

4 3 3 888.3 

4 5 2 664.3 

 ' 4875548.33y y =  

3.6 In the linear mixed model 
1

K

k kk
y Xβ Ζ u e

=
= + +∑  where ( )E y Xβ=  and 

( ) ' 2 2

01

K

k k k Nk
Var Iy V Ζ Ζ

=
= = +∑ σ σ , consider as proposed by Schaeffer (1986) 

the following quadratic forms 
*ˆ' '

k k k
y Q y y MZ u= , for 1,..,k K=  where 
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( )' '
N

M I X X X X
−

= −  and 
*ˆ
k

u  is the solution of the mixed model equations with 

ratios of variances 
* *2 *2

0 /
k k

=λ σ σ . 

 1) Show that if the 
*

k
λ ’s are equal to the true ratios of variances 

0

2 2/
k k

=λ σ σ , these quadratic forms have expectations 

 ( ) ( ) 2'
k k k k

E tr
'

y Q y Z MZ= σ  

 2) Extend this result to the case where 2 2

01

K

k k k k Nk
I

'
V Ζ A Ζ

=
= +∑ σ σ , 

where 
k

A  is a symmetric pd matrix.  

 3) Apply the previous results to the data set of example 3.5.1 with A 

fixed, B random and assuming an additive model.  

3.7 Same problem as in 3.6 with 
* 1 *ˆ'

k k k k
y Q y u A u−= �  (VanRaden and Yung, 1988) 

where 
* *

k k k

'u D Z My=�  and ( )* *

1 k
k d kl l q

dD
≤ ≤

=  is a diagonal ( )x
k k

q q  matrix made of 

elements 
*

kl
d  being the reciprocals of the diagonal elements of 

* 1

k k k k

'Z MZ A−+ λ   

 1) Show that if the ratios of variances used are the true ones, then 

( ) ( ) 2'
k k k k k

E tr
'

y Q y D Z MZ= σ .  

 2) Apply these results to the same model and data set as in exercise 3.6 

 

3.8. Using the same model as in Example 3.5, but now on the « boy » sample 

given in table 3.4, compute the ML estimations of variance components with 

Henderson’s algorithm and check the results with your favorite software. 

 

3.9. Use the same procedure as in Example 3.7 to test for homogeneity of slopes 

but now assuming that 

2

0 2

a ab

ab b

G
 

=  
 

σ σ

σ σ
. 
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3.10. Same question as in Exercise 3.9, but now applying a Wald test with SE 

calculated as a sandwich estimator. Compare the results of the test for i) the 

random intercept model, ii) the random intercept plus random slope model and 

iii) the robust approach. 

 1,...,i I=  

 

3.11. Let consider I pairs of random variables ( )1 2 1
,

i i i I
y y

≤ ≤
 such that 

 , 1,2ij i ijy e j= + =µ  with ( )ij i
E y = µ  and ( )20,

ij iid
e ∼ σN  (Neyman Scott, 

1948) 

1) Derive the ML estimator 
2

ML
σ  of 

2σ  an its expectation. 

2) Same question for the REML estimator
2

REML
σ  . Conclusion? 

3) Consider the additional estimator ( )2 2

1 1 21
/

I

i i ii
y y y I

=
 = −
 ∑�σ  . How 

does it compare with the two previous ones?  

 

3.12. The objective of this exercise is to build a vector of “error contrasts” 'A y  

for expressing the restricted likelihood of the linear model 
x1~( , )

N
y Xβ V . This 

problem can be solved according to the following steps; 

1. Show that the eigenvalues of an idempotent ( )xm m M  matrix having 

rank q  have eigenvalues equal to 1 and 0 with multiplicity orders q  and m q−  

respectively.  

2. Show that ( ' ) '
N

S I X X X X−= −  can be expressed as 'AA S=  where the 

A  matrix is constructed from the N r−  normed eigenvectors 
k

U  pertaining to 

the non zero eigenvalues of ( ' ) '
N

S I X X X X−= −  such that 

[ ] ( )1 2x( )
, ,..., ,...,k N rN N r

A U U U U −−
= , r  being the rank of X .  

3. Show that 'A  can be written as 'A TS=  where T  is an ( )xN r N−  

transformation having full row rank, and consequently that 'A X 0= .  
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4. Illustrate these procedures in the simple case 
2~ ( , )

i iid
y µ σN , 1,...,i N=  

by making A  explicit for 3N = .  

 

3.13. Compute the estimations of 
2

0σ  and 
2

1σ  for the random intercept model of 

Example 3.1 using Henderson III. How these estimations compare with the ML 

and REML ones?  

 

3.14. Show that ( )'

02Max L , ;
β
β γ K y−  reduces to formula (3.121) 

( ) ( )' 1 1

0 0 0( ) ln ln 'C X V X V X y Xβ V y Xβ
− −+ + + − −� � , where β�  is a GLS 

solution to 
1 1' 'X V Xβ X V y− −=� .  

 

3.15. Let 
2~ ( , )

i iid
y µ σN , 1,...,i N=  with 

2

0~ ( , )µ µ τN , and consider the 

following two hypotheses 0H  : 0=µ µ  vs 1H  : 0≠µ µ . Consider now the the 

Bayes factor in favour of 0H  against 0 1H H∪  defined as 

( ) ( )01 0 1| / |B f y H f y H=  where ( )1
/

N

ii
y y N

=
= ∑  and ( )|

k
f y H  the 

corresponding density under 
k

H  for 0,1k = .  

1. Show that 
01B  can be expressed as ( )2 2 2

01 1 exp / 2 1B z
−  = + − + ρ ρ  

where ( )0 /z N y= − µ σ  and / N=ρ σ τ .  

2. For N  large, show that 
01B  can be approximated by 

( ) ( )2

01 / exp / 2B N z≈ −τ σ . 

3. How does this expression can be connected to the use of BIC for 

comparing the reduced model 0H  to the complete model 0 1H H∪ ? In particular, 

what condition is required on the prior distribution of µ , in addition to N  large, 

to make 
01 0 1B BIC BIC≈ −  ?  
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3.16. Compare the models considered in example 3.10 for the skin data set 

(table 3.6) using in BIC the effective sample size 
1'

e
N 1 R 1−=  in place of N .  

You will first, derive the theoretical expression of 
e

N  for the random 

intercept model  ,  1,..., , 1,...,ij i ij iy a e i I j n= + + = =µ  where ( )2~ 0,
i iid a

a σN  

and ( )2~ 0,
ij iid e

e σN  and show that 
e

N  reduces to N  and I  respectively when 

the intraclass correlation coefficient ( )2 2 2/
a a e

ρ σ σ σ= +  equals 0 and 1 

respectively. Same question for the AR(1) model ( )1ij ij ij
y y e−= + − +µ φ µ .  

In the random intercept model, (1 )R I J= − +ρ ρ  where I  the identity 

matrix and 'J 1 1=  a square matrix of ones. Knowing that, 

( )
1 1

1 1 1n
R I J−

 
= − 

− + − 

ρ

ρ ρ
with diagonal 

( )
( ) ( )

1 2

1 1 1

mm n

n
R

+ −
=

− + −  

ρ

ρ ρ
 and 

off diagonal elements 
( ) ( )

'

1 1 1

mm

n
R = −

− + −  

ρ

ρ ρ
. Summing up the n  

diagonal and the ( )1n n −  off-diagonals elements of 1R−  gives 
( )1 1

n

n+ −ρ
. 

Now to get 
e

N , we have to take the sum of such terms over the different 

subjects 1,...,i I=  so that 
( )11 1

I
i

e i
i

n
N

n=
=

+ −
∑

ρ
 which lies between I  the 

number of subjects ( 1ρ = ) and N  the total number of observations ( 0ρ = ).  

In the AR(1) model, the correlation matrix  a the following structure 

2 3

2

2

3 2

1

1

1

1

R

 
 
 =
 
 
 

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

 (example for 4n = ) and its inverse 1−R  is a 
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tridiagonal matrix with elements ( )
2

1
1 2

2

1 0 0

1 0
1

0 1

0 0 1

R
−

−

− 
 

− + − = −
 − + −
 

− 

ρ

ρ ρ ρ
ρ

ρ ρ ρ

ρ

. 

Letting ( )2 11 'S ρ −= − 1 R 1 , then ( ) ( ) ( )22 2 1 2 1S n nρ ρ= + − + − − . Now, 

replace 
21 ρ+ by ( )

2
1 2ρ ρ− +  so that  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

2

2 2 1 2 2 1

2 1 2 1

1 2 1 2

S n n n

n

n

ρ ρ

ρ ρ

ρ ρ

 = + − − + − − − 

= − − + −

 = − − − + 

 

And finally after dividing by ( )21 ρ− , one has ( )1 1
' 1 1

1
n

ρ

ρ
− −

= + −
+

1 R 1  and 

summing over subjects leads to ( )
1

1
1 1

1

I

ie i
nN

=

 −
+ − + 

=∑
ρ

ρ
 which lies between 

I  and N  values attained for ρ  equal to 1 and 0 respectively.  

Application to the skin example yields 
e

N  equal to 9.90, 11.79, 11.43 and 19.28 

for the intraclass, AR1, ARH1 and Unstructured models respectively with the 

corresponding BIC3 values shown in the table below. According to BIC3, the 

best model is now the intraclass one in agreement with AIC, AICC and BIC2. In 

fact, BIC3 is close to BIC1 for the intraclass and AR1 and ARH1 models due to 

a high intraclass correlation (0.77  ) and auto regressive parameters (0.83  and 

0.84  for AR1 and ARH1 respectively) but remains strongly penalized for the 

Unstructured model due to some smaller correlations and a large number of 

parameters.  
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Table. Comparison of covariance structure models based on AIC, AICC and 

BIC for the skin data 

Model k -2RL AIC AICC BIC1 BIC2 BIC3 

Intraclass 2 469.6 473.6 473.9 473.7 477.0 474.1 

AR1 2 471.1 475.1 475.5 475.3 478.6 476.1 

ARH1 7 461.6 475.6 478.9 476.2 487.8 478.7 

UN 21 425.1 467.1 513.3 468.8 503.6 487.2 
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3.5 Technical note on the Henderson Method III  

3.5.1 Estimation procedure 

The Henderson method III (Henderson, 1953; Searle et al., 1992; later on 

referred as H-III) is applicable to any mixed linear model y Xβ Ζu e= +++++  

defined in (3.4) and (3.5) namely 

 
1 0

K K

k k k kk k
y Xβ Ζ u e Xβ Ζ u

= =
= + + = +∑ ∑ , (3.5.1) 

with µ Xβ=  and 2 ' 2 2 '

01 0

K K

k k k N k k kk k
V Ζ Z I Ζ Z

= =
= + =∑ ∑σ σ σ . 

The method is based on the following two steps. First, H-III relies on quadratic 

forms obtained as reductions due to fitting the model and some of its submodels 

as if they were purely fixed according to the fitting constant method of Yates 

(1934). These quadratics may be sums of squares or not depending mainly on 

the data structure (balanced vs unbalanced respectively) and on the kind of 

model adjusted. The second stage consists of equating the observed values 

(vector q ) to their expected values ( )E q  expressed as linear functions of the 

unknown parameters and taken under the true random or mixed model 

considered.  

Let ( )S r k
u u= , k S∈ , { }: 1,...,S k K⊆ =I  be a substet of vectors 

k
u  out of the 

complete set of vectors , ( )r k
u u= 1 k K≤ ≤ . For instance with 3 random 

vectors of random effects 
1u , 

2u  and 
3u , the potential subsets are the triplet 

itself ( )1 2 3, ,u u u , doubles( )1 2,u u , ( )2 3,u u , ( )1 3,u u and singletons 
1u , 

2u  and 

3u .  

As shown clearly later on, H-III utilizes the following quadratic: the total sum of 

squares, 'y y  ; the reductions due to fitting the full (fixed) model ( ),R β u , 

different submodels ( ),
S

R β u and the β  model ( )R β .  

By definition, ( )' ' ' ( )E try y β X Xβ V= +  v.i.z after expliciting V  

 ( )
0

2' ' '
K

kk
E Ny y β X Xβ

=
= + ∑ σ .  (3.5.2) 
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The other reductions are special cases of ( ),
S

R β u . Let ( )', '
S

'
θ β u=  be the 

concatenation of vector β  and vector 
S

u  defined previously and  ( ),
S S

W X Z=  

the corresponding incidence matrix, then ( )S
R θ  is the reduction due to fitting 

the fixed model 
S S

y W θ e= + , that is 

 ( ) ˆ 'S S S SR
' '

θ θ W y y P y= = , 

where ˆ
S

'
θ  is the LS estimator of 

S
θ , and 

S
P  stands in short for the usual 

projector ( )
SW S S S S

'
P W W W W

−

=  defined in (1.16). 

Applying the classical result about the expectation of quadratic forms (1.33) 

( ) ( )' 'E try Qy µ Qµ QV= +  to ( )S
R θ yields 

 ( ) ( ) ( )0

2 2

1
' ' '

K

S S S S k k kk
E tr tr

'
y P y β X P Xβ P P Z Z

=
= + +∑σ σ . 

Simplification of this expression comes from the properties of 
S

P  so that 

 ( ) ( ) ( )S S S
tr r rP P W= = , 

 
S S S

P W W= . 

In particular, since ( ),
S S

W X Z= , this means that 

 
S

P X X= , 

 
S k k

P Z Z=  for k S∈ . 

Moreover, 
k

Z  being an incidence matrix with each row of 
k

Z  having its 

elements equal to 0 but one equal to 1, ( )S k k
tr N

'
P Z Z =  for k S∈ . This implies

 
( ) ( )

( )
0

2 2

2

' 'S S kk S

S k k kk S

E R r N

tr
'

θ β X Xβ P

P Z Z

∈

∉

  = + + 

+

∑
∑

σ σ

σ
 (3.5.3) 

Now, if we contrast two reductions such as ( ),R β u  and ( ),
S

R β u , the 

expectation of the difference reduces to 

 
( ) ( ) ( )

( )
0

2

2

| , , ,S SS

N S k k kk S

E R r r

tr
'

u β u X Z X Z

I P Z Z
∈

   = −  

+ −∑

σ

σ
 (3.5.4) 
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where S  is the complementary set of S  with respect to I . ² 

This means among other things that this expectation does not involve any term 

in β , nor components of variance occuring in 
S

u , but only coefficients for the 

residual 
0

2σ  and for variance components being in u  but not in 
S

u . For instance, 

suppose that ( )1 2 3, ,u u u u=  and ( )1 2,
S

u u u= , then 

 
( ) ( ) ( )

( )
0

2

3 1 2 1 2

2

12 3 3 3

| , , , , ,

N

E R r r

N tr
'

u β u u X Z X Z Z

I P Z Z

  = −   

 + − − 

σ

σ
 

where 
12P  refers to the projector on ( )1 2, ,X Z Z , and Z  (respectively 

3Z ) to the 

incidence matrix pertaining to u  (respectively 
3u ). 

This formula clearly highlights the fact that only reductions of submodels 

including β  are useful since all of them have the same quadratic form ' 'β X Xβ , 

and this nuisance term vanishes when two reductions are contrasted.  

Let us see now how to estimate the residual variance 
0

2σ . Applying (3.5.3) to the 

complete model ( ),β u , one has 

 ( ) ( ) 0

2 2

1
, ' '

K

kk
E R r Nβ u β X Xβ W

=
= + +   ∑σ σ .  

Contrasting the total sum of squares 'y y  and this reduction ( ),R β u  yields the 

usual SSE  quadratic that occurred in the LS theory. On account of the 

expectations of 'y y  (formula 3.5.2) and ( ),R β u  given above, it turns out that 

the expectation of SSE  under the true mixed model ( ),β u  is the same as in the 

completely fixed model v.i.z 

 ( ) ( ) 0

2
E SSE N r W= −  σ ,  

so that an unbiased estimator of 
0

2σ  is 

 ( )0

2ˆ / ,SSE N r X Z= −  σ . (3.5.5) 

There are K  remaining unknowns that require K  quadratic forms and their LIN 

expectations. In many cases, there are more possible such reductions (maximum 
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2K ) than unknowns so that H-III does not provide unique solutions for a given 

model due to some arbitrariness in choosing the reductions.  

Finally, letting ( )
0

'
c k k K

q y Q y
≤ ≤

=  be the vector of the 1K +  LIN quadratic 

forms chosen to estimate the variance components ( )2 2

0c k k K
σ

≤ ≤
= σ  such that 

( ) 2
E q Fσ=  with F  non singular, H-III estimators are obtained by equating the 

realized value of q  to its expectation expressed as a linear function of 
2
σ , that is 

2ˆFσ q=  leading to 

 
2 1σ̂ F q−= . (3.5.6) 

3.5.2 Sampling variances 

From (3.5.6), we can derive the expression of the sampling variances of 
2
σ̂  

 ( ) ( )2 1 1ˆVar Varσ F q F
− −= . (3.5.7) 

To explicit ( )Var q , we use the following result 

Result. For symmetric A  and B  and assuming that ~ ( , )y Xβ VN , then  

 ( ) ( )' , ' 4 ' 2Cov try Ay y By µ AVBµ AVBV= + .  (3.5.8) 

Here, the quadratic forms '
kl

y Q y  entering q  are obtained as differences of 

quadratic forms defined in (3.5.4) with 
kl k l

Q P P= −  so that 
kl

Q µ 0=  because 

k
P  and 

l
P  are projectors. Therefore, the element ( ),i j  is 

 ( ) ( )' , ' 2
i j i j

Cov try Q y y Q y Q VQ V= .  

This gives complicated expressions as shown for instance with two random 

factors and a residual ( )0 1 2

2 2 2 2, , 'σ = σ σ σ . In that case, after applying the previous 

formulae, the element ( ),i j  of ( )Var q  can be expressed as 2 2

ij

'
σ T σ  where ijT  is 

a ( )3x3  symmetric matrix defined as 
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( ) ( ) ( )

( ) ( )

( )

0 0 0 0 0 0 1 1 0 0 2 2

1 1 1 1 1 1 2 2

2 2 2 2

i j i j i j

ij i j i j

i j

tr tr tr

tr tr

symmetric tr

' ' ' ' ' '

' ' ' '

' '

Q Z Z Q Z Z Q Z Z Q Z Z Q Z Z Q Z Z

T Q Z Z Q Z Z Q Z Z Q Z Z

Q Z Z Q Z Z

 
 
 =
 
 
 

. 

Since the expression of '
kl

y Q y  is generally tedious, it has been suggested to 

replace '
k

y P y  by its equivalent form k k k

'r G r  where k k

'r W y=  is the right hand 

side of the LS equations due to fitting 
k k

y W θ e= +  and ( )k k k

'
G W W

−

= . Then, 

one can express ( )Var q  accordingly as a function of 
2
σ  and of the 

k
r  and 

k
G ’s 

knowing that  

 ( ) ( ), 2
k k k l l l k kl l kl

Cov tr
' '

r G r r G r G C G C= ,  

where ( )0

2 2

1 i

K

kl k l k i i li

' ' '
C W W W Z Z W

=
= +∑σ σ . 

3.5.3 Example. Estimation of variance components in the 2-way mixed linear 

model with interaction. 

Data are collected according to a 2-way cross classified design (see examples 

1.4 and 2.4) and analyzed accordingly by a two factor (say A and B) mixed 

linear model with interaction but here assuming A being fixed, B and 

consequently AxB random 

 ijk i j ij ijky a b c e= + + + +µ , 

where ijky  is the 
th

k  observation ( )1,...,
ij

k n= from the 
th

i  level ( )1,...,i I=  of 

factor A and the 
thj  level ( )1,...,j J=  of factor B; µ  is the general mean, 

i
a  is 

the fixed effect of level i , jb  is the random effect of level j , ijc  is the 

corresponding random interaction and ijke  the residual term.  

We assume that ( )2~ 0,
j iid b

b σ , ( )2~ 0,
ij iid c

c σ , ( )2~ 0,
ijk iid e

e σ , and jb , ijc , ijke  

are uncorrelated among them. Unknown parameters are 
2

b
σ , 

2

c
σ , 

2

e
σ  and the 
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quadratic form in fixed effects ' 'β X Xβ  equal here to ( )0

2

1

I

i ii
n a

=
+∑ µ  as a 

nuisance quantity. We need four quadratic forms to estimate them which apart 

from the total sum of squares 'y y  must all include A-effects in the 

corresponding reductions that are ( ),R aµ , ( ), ,R a bµ  and ( ), , ,R a b cµ .  

Let the model be written in matrix notations as 

 
N a b c

y 1 X a Z b Z c e= + + + +µ .  

Using this, we can express the reductions as 

 ( ) ( )
1

, ' a a a aR a
' '

y X X X X y
−

=µ . 

 ( ) ( )
1

, , ' ' 'R a b y W W W W y
−

=µ , 

with ( ), ,
a b

W 1 X Z= . 

 ( ) ( )
1

, , , ' F F F FR a b c
' '

y W W W W y
−

=µ , 

with ( ), , ,
F a b c

W 1 X Z Z= .  

Notice that ( ),R aµ  and ( ), , ,R a b cµ  can be simply expressed as sums of 

squares 

 ( ) 00

0

2

1
,

I
i

i
i

y
R a

n=
=∑µ  , ( ) 0

2

1 1
, , ,

I J ij

i j
ij

y
R a b c

n= =
=∑ ∑µ  

since equivalent cell-mean models are ( )ijk i
E y = µ  and ( )ijk ij

E y = µ  respectively 

with LS estimations 
00 0..ˆ /

i i i i
y y n= =µ  and 

0.ˆ /ij ij ij ijy y n= =µ .  

The next step consists of expressing the expectation of these quadratic forms 

under the true model. Using (3.5.3), one has 

 
( ) ( ) ( )

( )

2 2

2

, ' ' a e a b b b

a c c c

E R a r tr

tr

'

'

β X Xβ X P Z Z

P Z Z

= + +  

+

µ σ σ

σ
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where ( )
1

a a a a a

' '
P X X X X

−

= . 

Here ( )a
r IX = ; a b

'X Z  is a ( )xI J matrix with ij  term ( )a b ij
ij

n
'

X Z = ; a b b a

' 'X Z Z X  

has diagonal i  term ( ) 2

1

J

a b b a ijjii
n

' '
X Z Z X

=
=∑ ; same thing for a c c a

' 'X Z Z X  so that 

 ( ) ( ) ( )0

2 2 2 2

1
,

I

i i e b ci
E R a n a I k

=
= + + + +   ∑µ µ σ σ σ , 

with 
0

1 2

1 1

I J

i iji j
k n n

−

= =
=∑ ∑ .  

Similarly since ( ) 1r I JW = + −  and effect b  belongs to the reduction,  

 ( ) ( ) ( )0

2 2 2 2

1
, , 1

I

i i e b ci
E R a b n a I J N h

=
= + + + − + +   ∑µ µ σ σ σ , 

with ( )' ' c ch tr
'W W W Z Z W

− =
 

.  

Finally, 

 ( ) ( ) ( )0

2 2 2 2

1
, , ,

I

i i e b ci
E R a b c n a s N

=
= + + + +   ∑µ µ σ σ σ , 

where s  represents the number of non empty cells in the design, that is IJ  if the 

design is complete but it is not necessarily the case (see next example).  

In order to eliminate the term involving the fixed effects, we can build the 

following quadratic forms as in an ANOVA type table: 

 ( )' , , ,SSE R a b cy y= − µ , 

 ( ) ( ) ( )| , , , , , , , ,R c a b R a b c R a b c= −µ µ µ , 

 ( ) ( ) ( )| , , , ,R b a R a b R a= −µ µ µ . 

From what has been seen in the previous formulae, these quadratic forms have 

expectations 

 ( ) ( ) 2

e
E SSE N s= − σ , 
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 ( ) ( ) ( )2 2| , , 1
e c

E R c a b s I J N h= − − + + −  µ σ σ , 

 ( ) ( ) ( ) ( )2 2 2| , 1
e c b

E R b a J h k N k= − + − + −  µ σ σ σ . 

Equating these expressions to the observed values, one obtains a linear system 

that can be easily solved row by row starting from the first. Alternatively, under 

a matrix form, it looks as follows 

 ( )
( )

2

2

2

ˆ0 0

ˆ1 0 | , ,

ˆ1 | ,

e

c

b

N s SSE

s I J N h R c a b

J h k N k R b a

 −   
    

− − + − =    
    − − −    

σ

σ µ

σ µ

.  

These formulae can be easily applied to the following toy example. 

Table 3.5.1 Distribution of data (sums) according to the levels of factors A and 

B 

A B n  y∑  

1 1 2 100 

1 2 2 140 

1 3 6 480 

2 1 5 300 

2 2 9 810 

 ' 159800y y =  

Using these data sets, we can compute the different reductions required for 

estimating the variance components. We have 

 ( )
( ) ( )

2 2
100 148 480 300 810

,
12 14

139847.1429

R a
+ + +

= +

=

µ
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( )

2 2 2 2 2100 140 480 300 810
, , ,

2 2 6 5 9

144100

R a b c = + + + +

=

µ
 

In order to calculate ( ), ,R a bµ , the fixed effects are parameterized as 

1 1 2 1 2 1 3 1,  ,  ,  a b a a b b b b+ + − − −µ  so that 

 

24 14 11 6

14 14 9 0
'

11 9 9 11

6 0 0 0

W W

 
 
 =
 
 
 

, ( )' 1830 1110 950 48W y = .  

( ) ( )
1

, , ' ' ' 144023.7288R a b y W W W W y
−

= =µ , ( )| , 4176.5859R b a =µ  and  

( )| , , 76.2712R c a b =µ .  

In addition, here 24N = , 2I = , 5s =  since the lay-out has cell 3x2 empty and  

 ( ) ( )159800 144100 / 24 5 826.3158MSE = − − = , 

 
2 2 2 2 2

34
35

2 2 6 5 9
11

10 14
k

+ + +
= + = . 

Computing coefficient h  requires 'W W  as shown previously and '
c

W Z  that is 

 

2 2 6 5 9 0

0 0 0 5 9 0
'

0 2 0 0 9 0

0 0 6 0 0 0

cW Z

 
 
 =
 
 
 

 ; 

the last column made of zeroes could have been ignored; however, it reminds us 

that there is no data for cell 3x2 although the corresponding 
23c  random effect 

still exists. Using the values of 'W W  and '
c

W Z  gives  

 ( )
1

' ' 20.949152c ch tr
'W W W Z Z W

− = =
 

. 



 179

Then the system to solve reduces to 

 

2

2

2

ˆ19 0 0 826.3158

ˆ1 24 0 76.2712

ˆ2 24 4176.5859

e

c

b

h

h k k

    
    

− =    
    − −    

σ

σ

σ

. 

Its solutions and SE are 
2ˆ 826.32 ± 259.55
e

=σ ,
2ˆ 245.85 ±1089.42
c

= −σ  and 

2ˆ 393.32 ±1006.70
b

=σ . SE values reported here are computed under the 

assumption of normality of random effects and under the premice that true 

values of variance components are 
2ˆ 800
e

=σ , 
2ˆ 100
c

=σ  and
2ˆ 200
b

=σ .  

The results can also be displayed as in some software (e.g. SAS-Proc Mixed or 

Proc Varcomp) under the classical format of an ANOVA table. 

Table 3.5.2 ANOVA table for H-III estimators of variance components in a 2 

way crossclassification with factor A fixed and B random 

Source DF Sums of 

Squares 

Mean 

Square 

Expected 

Mean square 

A 1 No object No object No object 

B 2 4176.5959 2088.2930 2 2 24.4889 6.0143
e c b

+ +σ σ σ  

C=AxB 1 76.2712 76.2712 2 23.0558
e c

+σ σ  

Residual 19 15700 826.3158 2

e
σ  

Notice that the estimation of 
2

c
σ  is clearly negative. This result reminds us of an 

important feature of this method and more generally of ANOVA-based 

quadratic estimators of variance components. Apart from 
2

e
σ , they can produce 

negative estimates. Although setting such estimates to zero might appear as 

common sense, this adjustement is not completely satisfactory since it violates 

the property of unbiasedness. In fact, it means that we are dealing with a new 
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model which ignores those random components implying to re-estimate the 

remaining ones under that model. In this case, we come back to an additive 

mixed linear model ijk i j ijky a b e= + + +µ , where 
i

a  is the fixed effect of level i , 

( )2~ 0,
j iid b

b σ  and ( )2~ 0,
ijk iid e

e σ .  

Estimation of 
2

e
σ  and 

2

b
σ  are based on ( )* ' , ,SSE R a by y= − µ  and ( )| ,R b aµ  

respectively so that 

 ( ) ( )* 21
e

E SSE N I J= − − + σ , 

 ( ) ( ) ( )2 2| , 1
e b

E R b a J N k= − + −  µ σ σ , 

where 
0

2 /
ij iij

k n n=∑  as before. 

This yields 

 
2 159800 144023.7288

ˆ 788.81
20

e

−
= =σ , 

 
2

2 ˆ4176.5859 2
ˆ 216.07

12.0285

e
b

−
= =

σ
σ .  

Happily, there is no ambiguity in the choice of quadratic forms for these two 

mixed models : the additive and the interactive ones. But, it is by far not always 

the case. For instance, consider the additive purely random model with three 

variance components 
2

a
σ , 

2

b
σ  and 

2

e
σ . In such a case, we have at least four 

different choices of quadratic forms in order to estimate the variance 

components: 

 a) ( )|R a µ , ( )| ,R b aµ , ( )' , ,R a by y − µ  

 b) ( )|R b µ , ( )| ,R a bµ , ( )' , ,R a by y − µ  

 c) ( )| ,R a bµ , ( )| ,R b aµ , ( )' , ,R a by y − µ  
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 d) ( )|R a µ , ( )|R b µ , ( )' Ry y − µ . 

Choices a) and b) rely on asymmetric reductions corresponding to fitting 

explanatory variables upward one by one (the so-called type I reductions in 

SAS-GLM terminology) while c) and d) involve symmetric reductions due to 

fitting each factor either in c) after all other terms have been added (Type II) or 

in d) after only the intercept. None of them looks a priori better than the others : 

see exercise.  
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3.6. Appendix : Information matrices 

ML Estimation 

The starting point consists in the expression of  written as  

  (3.6.1) 

where ( )( ) 2L ; 2ln ( )l fβ,γ β,γ y y β,γ= − = − . 

We already saw that the first derivatives can be expressed as: 

 , (3.6.2) 

  . (3.6.3) 

From these, we can derive the expressions of the second derivatives 

 , (3.6.4) 

 , (3.6.5) 

 (3.6.6) 

After dividing by two, these formulae provide the terms entering the observed 

information matrix where , that are used in 

the Newton-Raphson algorithm.  

The Fisher information matrix  is obtained after taking the 

expectation of , that is: 

 , (3.6.7) 

 , (3.6.8) 

( )2L ;− β,γ y

( ) ( ) ( )1( ) ln 2 ln 'l N π −= + + − −β,γ V y Xβ V y Xβ

( ) 1,
2 ' ( )

l −∂
= − −

∂

β γ
X V y Xβ

β

1 1 1( )
tr ( ) ' ( )

k k k

l

γ γ γ
− − − ∂ ∂ ∂

= − − − 
∂ ∂ ∂ 

β,γ V V
V y Xβ V V y Xβ

( )2

1,
2 '

'

l −∂
=

∂ ∂

β γ
X V X

β β

( )2

1 1,
2 ' ( )

k k

l

γ γ
− −∂ ∂

= −
∂ ∂ ∂

β γ V
X V V y Xβ

β

2 2
1 1 1

2
1 1 1

( )
tr tr

( ) ' 2 ( )

k l k l k l

k l k l

l

γ γ γ γ γ γ

γ γ γ γ

− − −

− − −

   ∂ ∂ ∂ ∂
= −   

∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
− − − − 

∂ ∂ ∂ ∂ 

β,γ V V V
V V V

V V V
y Xβ V V V y Xβ

( )2

ˆ

L ;
ˆ( ; )

'
=

∂
= −

∂ ∂
α α

α y
I α y

α α
( )', ' '=α β γ

( ) [ ]E ( ; )=J α I α y

( ; )I α y

1'ββ
−=J X V X

βγ =J 0
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 . (3.6.9) 

Two remarks are worthwhile at this stage. First, it turns out from (3.6.8) that the 

ML estimators of  and  are asymptotically uncorrelated. Secondly, formulae 

(3.6.7-8-9) apply as well to linear and nonlinear  structures. 

REML estimation 

The logresidual likelihood can be written as 

  (3.6.10) 

where . 

After differentiating with respect to , one has: 

  (3.6.11) 

Now,  

 , 

  

which allows to single out and factorize the  matrix  

 .  (3.6.12) 

It remains to make  explicit. By definition,  with 

 so that its first derivative is 

 .  (3.6.13) 

( ) 1 11
tr

2kl
k l

γγ
γ γ

− − ∂ ∂
=  

∂ ∂ 

V V
J V V

β γ

V

( ) [ ] 1r( ) ln 2 ln ln ' 'r N π −= − + + +γ X V X V X y Py

( )( ) 2L ; 'r = −γ γ K y

kγ

( )
1ln 'ln

'
k k k k

r

γ γ γ γ

−∂∂∂ ∂
= + +

∂ ∂ ∂ ∂

X V XVγ P
y y

1ln

k k

tr
γ γ

−∂  ∂
=  

∂ ∂ 

V V
V

( )

( )

1

1 1 1

1 1 1

ln '
tr ' '

tr ' '

k k

k

γ γ

γ

−
−

− − −

−− − −

∂  ∂
=−  

∂ ∂ 

 ∂
= −  

∂ 

X V X V
X V X X V V X

V
V X X V X X V

P

1ln 'ln
tr

k k kγ γ γ

−∂∂  ∂
+ =  

∂ ∂ ∂ 

X V XV V
P

kγ

∂

∂

P ( )= −VP I Q

( )1 1' '
−− −=Q X X V X X V

k k kγ γ γ

∂ ∂ ∂
+ = −

∂ ∂ ∂

V P Q
P V
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Moreover, by directly differentiating the expression of  

 . 

Hence, after substitution in (3.6.13), , that is 

 . (3.6.14) 

Therefore, the residual score is: 

 . (3.6.15) 

We can check that the expectation of the score is zero. 

  

Now , and because  and , the second 

term :is equal to the first (QED). 

The Hessian is derived by differentiating (3.6.15); it can be expressed as for ML 

in (3.6.6)  

 . (3.6.16) 

The Fisher information follows 

 .  (3.6.17) 

  

Q

k kγ γ

∂ ∂
= −

∂ ∂

Q V
Q P

( )1

k kγ γ
−∂ ∂

= − −
∂ ∂

P V
V I Q P

k kγ γ

∂ ∂
= −

∂ ∂

P V
P P

( )
tr '

k k k

r

γ γ γ

 ∂ ∂ ∂
= − 

∂ ∂ ∂ 

γ V V
P y P Py

( )
E tr tr E( ')

k k k

r

γ γ γ

     ∂ ∂ ∂
= −     

∂ ∂ ∂     

γ V V
P P P yy

E( ') ' '= +yy Xββ X V =PX 0 =PVP P

2 2

2

( ; )
tr tr

' 2

k l k l k l

k l k l

r

γ γ γ γ γ γ

γ γ γ γ

   ∂ ∂ ∂ ∂
= −   

∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
− − 

∂ ∂ ∂ ∂ 

γ y V V V
P P P

V V V
y P P Py

( )
1

tr
2kl

k l

γγ
γ γ

 ∂ ∂
=  

∂ ∂ 

V V
J P P
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