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Context

Radon is a noble and radioactive gas which is ubiquitous in
soils and rocks
It is known to be the second leading cause of lung cancer
(Samet 2000) responsible for about 2% of cancer deaths in
Europe (Darby 2005)

Cohorts of uranium miners
present an important source

of information on this
association
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Lead
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Context

Studies analysing the lung cancer risk associated with
exposure to radon in uranium miners rarely account for
exposure measurement error
Non differential exposure measurement error may cause
bias in risk estimates, a distortion in the exposure-risk
relationship and a loss in power
Results obtained on the exposure risk relationship taking
into account measurement error are mainly based on
simulation studies using Poisson regression
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Categorisation in Poisson regression
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Context

Regression calibration uses two disjoint steps to estimate
true exposure and risk parameters
The Bayesian hierarchical approach provides a natural way
of combining exposure and parameter uncertainty in a
coherent framework
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Aims

Radon

{Measurement 
error

Obtain a measurement 
corrected estimate of 

the lung cancer risk associated  
with cumulative exposure to Radon
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The French Uranium Miners’ Cohort

5086 uranium 
miners!

employed for at least 
one year at CEA-

COGEMA

31 December!
20071946

mean follow-up:!
35 years (0.1-60 years)

40 miners!
 lost to 
 follow-up   

1935 miners!
 dead

211 miners!
 dead by lung  
 cancer (11%) 

2924 miners!
 alive

187 miners!
 > 85 years

mean cumulated exposure:!
36.61 WLM  

(0.003 - 960.11)
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Radon Exposure in the Cohort
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Radon Exposure in the Cohort
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Modelling measurement error

Richardson & Gilks (1993) propose to account for measurement
error using conditional independence models:

disease model: [Yi |Xi , β]

measurement model: [Xi |Zi , σ]

where Yi is the outcome, Xi denotes the vector of true
exposure and Zi the vector of observed exposure for miner i
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The disease model

Yi = min(Ti ,Ci )

δi = 1[Ti<Ci ]

Age at first exposure Ai as potential modifying factor
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Two potential hazard structures:

hi (t) =

h0(t)exp(β
∑
tj

Xi,tj (t)
tj−5 exp(γAi (t)))

hi (t) =

h0(t)(1 + β
∑
tj

Xi,tj (t)
tj−5 exp(γAi (t)) )
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Modelling baseline hazard

No assumptions about the form of the baseline hazard
The piecewise constant hazard model is a convenient
nonparametric model
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The measurement model

Neglect classical measurement error 1983 - 2007
Berkson model during the period 1946 -1982:
X = Z · U where E(U|Z ) = 1 and U log-normal
distributed (Heid 2002)
Categorisation of measurement error in the cohort by
Allodji et al. (2012):
Define σ2

1, σ
2
2, σ

2
3, σ

2
4 as error variances for the periods

1946-1955, 1956-1974, 1975-1977 and 1978-1982

U ∼ LN
(
−
σ2piq
2 , σ2

piq

)
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Integrating measurement error
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Integrating measurement error
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Bayesian inference

π(θ|y ,Z ,A) ∝π(β)π(γ)π(σ)π(λ)
n∏

i=1

L

yi |
Qi∑
q=1

Xiq,Ai , β, γ, λ


·

n∏
i=1

Qi∏
q=1

f (Xiq|Ziq,σ)

Markov Chain Monte Carlo method to sample from the
joint posterior distribution
Metropolis-Hastings algorithm implemented in Python
Model comparison based on Deviance Information Criterion
(DIC)
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Prior distributions

π(β): β ∼ N (0, 104)
truncated at zero (to guarantee hi > 0)
π(γ): γ ∼ N (0, 104)

π(λ): λj ∼ G(α0j , λ0j) for each component j, j = 1, . . . , 4
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π(σ): No validation sample available, use point estimates
based on Allodji et al. (2012)
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Comparing the different models

Model DIC
Intercept only 5458.41
Excess relative risk model X cum

i (t) 5433.39
Excess relative risk model X cum

i (t) · exp(Ai (t)) 5436.02
Cox-like model X cum

i (t) 5443.64
Cox-like model X cum

i (t) · exp(Ai (t)) 5445.03

Model β γ λ1 λ2 λ3 λ4
in 10−8 in 10−6 in 10−6 in 10−6

ERR X cum
i (t) 0.89 (0.23) - 4.85 (0.97) 1.27 (0.15) 5.25 (0.42) 9.90 (1.07)

[0.49;1.37] - [3.15 ;6.94] [0.99;1.58] [4.46; 6.12] [7.92;12.14]
ERR X cum

i (t)· 0.85 (0.23) 0.14 (0.32) 4.87 (0.98) 1.28 (0.15) 5.28 (0.43) 9.94 (1.07)
exp(Ai (t)) [0.45; 1.34] [-0.53; 0.71] [3.13 ;6.91] [0.99 ;1.60] [4.49;6.15] [7.92;12.17]
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Prior and posterior distributions
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Integrating measurement error

Model β λ1 λ2 λ3 λ4
in 10−8 in 10−6 in 10−6 in 10−6

without measurement error 0.89 (0.23) 4.85 (0.97) 1.27 (0.15) 5.25 (0.42) 9.90 (1.07)
[0.49;1.37] [3.15 ;6.94] [0.99;1.58] [4.46; 6.12] [7.92;12.14]

with Berkson measurement error 0.98 (0.25) 4.82 (0.93) 1.26 (0.15) 5.23 (0.41) 9.86 (1.09)
[0.54; 1.50] [3.13 ;6.90] [0.98 ;1.58] [4.44;6.09] [7.88;12.08]
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Checking the convergence of the full model
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Checking the proportional hazards assumption

Harrell test: p = 0.16 > 0.05
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Checking the (log-) linearity of the model

Piecewise linear model for β:

Model DIC
Intercept only 5458.41
ERR X cum

i (t) 5433.39
ERR piecewise linear 5426.55

β̂1 (<100 WLM):
1.49 [0.84;2.23]

β̂2 (≥100 WLM):
0.29 [0.01;0.87]
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Discussion

Bayesian approach flexible, possible to account for exterior
information
Taking Berkson type measurement error into account does
not seem to substantially change the risk associated with
cumulative exposure to radon but the convergence for the
full model does not appear to be reached for the latent
variables
Assumption of linearity is violated: model misspecification?
It was not possible to adjust for tobacco consumption,
diesel exhaust, arsenic, asbestos and silica quartz
Mixture of Berkson and classical error before 1983?
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Perspectives

More extensive modelling of the exposure-risk relationship
Integrate classical error into the measurement model
Simulation studies to compare the performance of this
Bayesian approach to take measurement error into account
with classical frequentist methods
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Thank you for your attention
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Smoking as effect modifying factor
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Survival for piecewise constant baseline hazard

Si (yi ;X
cum
i ) =

exp

−ϕ(X cum
i ,Ai , β, γ)

J∑
j=1

δij (λj(yi − sj−1)

+

j−1∑
g=1

λg (sg − sg−1)
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The likelihood of the disease model

n∏
i=1

L

yi |
Qi∑
q=1

Xiq,Ai , β, γ, λ

 =
n∏

i=1

[h0(yi )ϕ(X
cum
i (yi ),Ai , β, γ)]

νi

·
Mi∏
m=1

Sm(r
m
i ;ωi ,m)

Sm(r
m−1
i ;ωi ,m)

=
n∏

i=1

Mi∏
m=1

[h0(r
m
i )ϕ(X cum

i (rmi ),Ai , β, γ)]
νi,m

·
Sm(r

m
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m−1
i ;ωi ,m)
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Effect of calendar period on baseline hazard
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Figure: Hazard of lung cancer mortality in French males for the
following periods: 1968-1977 (red), 1978-1987 (orange), 1988-1997
(blue), 1998-2005 (lightblue)

Sabine Hoffmann 24 / 24



A Bayesian
approach to

model
measurement
error in a
cohort of
uranium
miners

Sabine
Hoffmann

Introduction

Material and
Methods

Results

Discussion
and
conclusion

Effect of calendar period on lung cancer
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Characterisation of the error periods in the French
cohort of uranium miners
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Radon Exposure and its Assessment in the Cohort

Period 1946-1955 1956-1974 1975-1977 1978-1982 1983-1999

Ventilation poor medium good good

Exposure reconstructed ambient measurement by personal dosimetric
Assessment in 1981 scintillation flasks and and F × time system

Number only a few ≥ one per week several per week continuous:
of measurements in 1954 (>20.000/year) (>40.000/year) (monthly values)

Mean yearly
exposure 21.3 3.0 1.9 1.4 0.4

ne ganze zeile weißer schmarrn machts einfacher ⇒ Classical
schmarrn oder?a weng ⇒ Berkson error nochma,oda? error
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Checking log linearity

Test linear model against linear-quadratic model:
p = 0.006 < 0.05
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Principal sources of measurement error in the Cohort

Natural variations in air-borne radon gas concentration
Precision of the measurement device
Approximation of the equilibrium factor
Human error by the operator in charge of air samples
Estimation of working time
Record-keeping and data transcription
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Long-term perspectives

breathing 
characteristics type of ventilation

type of 
mine

absorbed 
 lung 
dose

Uncertainties

Radon

{Measurement 
error

{
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The principle of the Metropolis-Hastings algorithm

Choose an arbitrary starting value θ(0)

At iteration t and for each component θl , l = 1, . . . , p of θ
1 Given θ(t−1)

l simulate θcand
l ∼ N (θ

(t−1)
l , σ2

l )

2 Compute ρ(θ(t−1),θcand) = min
{
π(θcand|y ,Z ,A)
π(θ(t−1)|y ,Z ,A)

, 1
}

.

3 Accept θcand
l and set θ(t)l = θcand

l with probability
ρ(θ(t−1),θcand), otherwise reject θcand

l and set
θ
(t)
l = θ

(t−1)
l .

Vector X of true exposures updated by block
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