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@ Setting the scene




Clinical objective
to target the subpopulation who is more likely to respond to a given

treatment

Why ?
@ giving the right medicine to the right patient

@ saving patients safety, costs and time

How ?

@ Stage 1: removing the non
responsive subsets at the interim
analysis

e Stage 2: recruiting patients only in
the remaining subsets




=» Partition of K disjoint pre-specified subsets (K > 2)

=» Two distinct settings:
@ no a priori ordering of the subsets,

@ with a priori ordering of the subsets. Example with 4 subsets:

Noting 6; the treatment effect in subset i, 04 > 63 > 0, > 6;. J

=» Assumption made by the authors:
@ there is no opposite treatment effects across subsets
> 04>03>0,>06,>0.



=» Two-stage study with time-to-event endpoints

=» Subsets defined thanks to a continuous predictive biomarker

But no available cutoff value to distinguish responsive from
unresponsive patients to a given treatment

=¥ 4 subsets of equal size based on quartiles = data driven

=» Quantitative treatment-by-biomarker interaction expected

=» Subsets a priori ordered by nature

H{ - there is no positive treatment effect in the full population
Hdg . there is no positive treatment effect in the subpopulation S



Stage 1

Stop + reject Hy®

If Yys =y +V(ilyy)

New efficient
score for the

remaining
population Y,

else

Stage 2

Stage 2 \

Stop + reject Hp®

If Vo5 > u, « V(i)

New efficient
score for the
new
population Y,¢

else

Stop + accept H,®

)







If Yyq > 1y + V(I
_— Subsets 1,2, 3,4

where Yy; is the log-rank efficient score and Iy; is the Fisher's information of subset j at stage 1.
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If Vyg > 1y« V(1)
——— Subsets 1,2, 3, 4

else

else

If Y3 > 1+ \(T43)

else

1 ¥y > 1+ V()
—_—_—

I Yy > 1 = V()

else

— b StopracceptH
(futility)

where Yy; is the log-rank efficient score and Iy; is the Fisher's information of subset j at stage 1.

=S e {{1,23,4}, {234}, {3.4} {4}. 0}




Hy 0; =0,V subset j € S, tested for all selectable populations

S e {{1.2,3,4}, {2,3,4}, {34}, {4}. 0}

-> Z Py—o[Select S]Py—o[Reject H05|P* = S] = agiobal (1)
sCp

=» Weak control of type | error rate
P =1{1,2,3,4}

Weak control of type | error rate + assumption of no opposite
treatment effects across subsets

=» Strong control of type I error rate



Our purpose
to set up optimal recommendations, according to the scenario
underneath which we are, about using GSED

This requires

@ Comparing the pros and cons of

e GSED vs fixed design
e GSED vs Group Sequential Design
e GSED vs Combination Tests

@ Quantifying the impact of
e population selection procedure
e full vs partial enrichment

on the GSED decision-making
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Ho : HR=1 vs HR=0.8 5,000 trial simulations
Qiglobal = 0.025

8=0.1

one-sided

2 arms : placebo vs treatment

censoring rate = 0.1

median time-to-event = 1 year in placebo group

number of events expected = 847

interim analysis at 424 events reached

inclusion rate! =2 50 patients per month (25 each arm)

duration of inclusion = until the Number of Subjects Required
(NSR = 1830) is reached

expected duration of a fixed design (under HR=0.8) ~ 34 months

Yif 5={2,3,4} 85%, if S5={3,4} 75%, if S={4} 65%



Fixed design

GSED or
Combination Tests

start of study

Subpopulation
selection

interim analysis

final analysis




Upper boundaries defined using an

< Otglobal Spending function:

"
5 b u2 *

L aU(O) =0

- ay(0.5) = 0.0125
i . uz

P apy(1) = 0.025
24 I Lower boundaries defined using an

1 — aglobar spending function:

P < o L0 =0

= + 0385 aj(0.5) = 0.15,0.4875 or 0.85

interim analysis final analysis a:(l) = 0.975
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Figure: Probability to reject any Hy under the constant 0.8 scenario.



Primary criteria
@ control of FWER

@ power under various scenarios

@ averaged sample size

@ averaged duration of study

Secondary criteria

@ probability of stopping at stage 1
@ averaged final analysis date (=averaged maximum study duration)
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If HR < 0.8, then there is a positive treatment effect.
Good and bad outcomes defined with Sanofi's panel experts:

o If the top 25% of patients has a Hazard Ratio (HR) very close
to 0.8 or better, it is at least worth not stopping at the interim
analysis.

o If a wider subpopulation also meets this standard, then it is
good not to stop in that population.

@ A desirable feature is to retain the larger subpopulation whose
averaged HR is lower than 0.85.

@ Conversely, an undesirable feature is to retain an individual
subset having a deleterious treatment effect (i.e. HR > 1).



Move from one /; value to another one ?

Deleterious effect 0.6
g : ................ 0.725
14
T o]
“000 | 050 1.00
bio
GSED 0.4875 =» GSED 0.85
Probability to reject any HJ -15% X
Good outcomes rate +10% v
Bad outcomes rate ~10% = <5% V
Averaged duration -5% v
Averaged sample size -5% v



PROPERTIES GSED cT
strong FWER control +/++ | ++
power (reject any H ) ++ -
flexibility -
small sample size

small duration of study
likelier to stop at stage 1
minimizes bad outcomes
maximizes good outcomes

+ 4+ + + +

If GSED bad outcomes rate > GSED good outcomes rate, taking a CT
design instead of GSED may be an alternative.

Nevertheless

CT is inadequate for scenarios requiring enrichment because of a
substantial loss of power imputable to the closed testing principle.



© Discussion




=>» No gold standard configuration. goal and constraint-dependent
But globally, GSED more successful than CT.

=» Not surprisingly, GSED more suitable than fixed design under
scenarios with threshold and/or deleterious effect.
Comparative appraisal very challenging

@ many indicators which sometimes contradict one another

e.g. power vs sample size and duration

@ assessment of the soundness of population selection v/
but subjective and scenario-dependent

@ utility score bringing together the various key indicators X

Generalization of our results is hazardous
@ closely related to inclusion dynamics

@ percentile transformation run on a continuous biomarker
=» test-to-test variations in case of high variability in its value



Premature to express a firm opinion

strong control of type | error rate in a general setting is a
conjecture

difficulty in correctly addressing the bias estimation issues

implementation of a dedicated software package to derive the
GSED stopping boundaries is desirable

lack of flexibility in changing population selection rules
stopping boundaries rapidly intractable

full respect of the futility rule is mandatory

well-known relationship between biomarker and treatment
effect known thresholds or representative population to pre-specify
subsets

need /pertinence for selecting a subpopulation

no trouble in recruiting specific patients inclusion dynamics



Thanks for listening.
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Log-rank statistics

K
>~ (Dpbo.k — Epbo.k)
k=1

K

S= ~ N(O’ 1) (2)

k=1
where
® Dppo .k = number of deaths in the control arm at death time t;
® Nppok — Dpbo,k = number of living patients in the control arm

pro,kpra,k

® Eppok = =2

pro,thest,ka(Nk_Dk)
NZ(Nj—1)

° Vk = Vtest,k = Vpbo,k =

Efficient log-rank score

K
X = Z(pro,k - pro,k) (3)
k=1



@ d = number of expected events
@ 4 subsets with equal proportions
@ /y2x = the maximal Fisher's information = %

At the interim analysis

hj= g x

hi1234y =h1+ha+ hs+ ha
hi234y = ho+ h3+ ha

hizay = hs+ ha

At the final analysis

bi1234) = = + hy + ho + h3 + ha
biasay ==+ ho+ hs + ha

hizay = =2+ hz+ ha

by = l"';" + ha




How to deal with null hypotheses intersections 7

A weighting of the involved subsets
If S={3,4}, Hé3’4} s wibz + wybly <0,
where ws and wy are the respective sizes of subsets 3 and 4.

But, how formalizing the intersection of Hé3’4} and Hé4} ?

{0;} cannot be negative for any j i.e. there cannot be opposite
direction treatment effects (cf B. P. Magnusson and B. W. Turnbull)

> HU g =0

Thus, if S={3,4}, H{*" 1 65 = 0, = 0
=» intersections of null hypotheses are obvious



Upper boundaries obtained using an a spending function:

ay(0)=0 < a}(0.5)=a1 < aj(l)=agiobal

Py—_o[Stop trial at stage 1 with rejection of some Hy ] = aj;(0.5) — aj)(0)
= al
Py—_o[Stop trial at stage 2 with rejection of some Hy ] = aj;(1) — aj;(0.5)

= Olglobal — (1
& Hy 9, =0,V €S, tested for all selectable subpopulations S

2 ) Pso[Select S|Py_o[Reject Hy|P* = S| = agiopar  (4)
scp

= Weak control of type | error rate P=1{1,2,3,4}



Lower boundaries obtained using a 1 — « spending function:
a;(0)=0 < aj(0.5)=0] < aj(1)=1-0glopal
Py—o[Stop trial exactly at stage 1 with no rejection of any Hos]
= 0{(0.5) - a(0) = o}
Pg—o|[Stop trial exactly at stage 2 with no rejection of any H; |
=aj(1) — af(0.5) = 1 — aglobar — @)

o Py_o[Select (]Py—o[Accept Hy at stage 1|P* = ()] = Py—o[P* = 0]

—01(05) = a} (52)
o Py_o[P" =0]+ Z Py—o[Select S]Pg—o[Accept Hy at stage 2|P* = S|
u SEP = (1) = 1 — agiobal (5b)

L=, Condition 5b =% b = uy



Py—o[Stop at stage 1 with rejection of some Hy] =1 (6)
Py—o[Stop at stage 1 with no rejection of any Hy] = o  (7)

(6) + (7) = Py—o[Do not stop at stage 1] =1—a; —a)j (8)

And

Py—o[Stop at stage 2 with rejection of some Hg]
= Qiglobal — Q1 (9)

Py—o[Stop at stage 2 with no rejection of any H;]
=1 — oglobal — 0/1 (10)

(9) + (10) = (8) = wo=h



The FWER control

FWER = supyPy[Reject at least one Hy, S C PO(0)]

=supg >, Py[P* =S and subsequently reject HOS]
SCPO(0)

where PO(0) = {j € P : §; = 0}, the index set of subsets for which
there is no treatment effect.

So, for 6 = 0 i.e. when 0; =0,Vj € P, FWER = ajopas by design.

if, for any arbitrary 6,

FWER = Z Py[Select S and reject HOS] < Qgjopal
SCPO(0)




We assume that {f;} cannot be negative for any j i.e. there cannot
be opposite direction treatment effects =» Hé3’4} 103 =0,=0

and 0% such that P°(0T) # () and PO(61) C P but PO(6F) # P
=» at least one subset with a positive treatment effect
+ one with a null effect

Hence,
FWER = > Py:[Select S]Py:[Reject H3|P* = S]
SCPO(6+)

< Y Pso[Select S]Py_o[Reject Hy|P* = S]
SCPO(0+)



We assume that {6} cannot be negative for any j i.e. there cannot

be opposite direction treatment effects =» Hé3’4} 103 =60,=0
and 0% such that P°(0T) # () and PO(6F) C P but PO(0F) # P
=» at least one subset with a positive treatment effect

+ one with a null effect

Hence,
Under 67 configuration, at least one §; >0¢ S ={r,....4},j <r
=> less likely to select S (cf population selection process)

FWER= > P, [Select S|Py« [Reject H3 |P* = S]
SCPO(6F)

<

< Z P():o[SeIect S]szo[Re_ject H(35|P* = S]
SCPO(9+)



We assume that {6} cannot be negative for any j i.e. there cannot
be opposite direction treatment effects =» H§3’4} 103 =0,=0
and 0% such that P°(0T) # () and PO(6) C P but PO(6F) # P
=» at least one subset with a positive treatment effect

+ one with a null effect

Hence,
fs = 0 under both configurations

FWER = > Py:[Select S|Py [Reject Hy|P* = S]
SCPO(6+)

< Z Py—o[Select S]Py—o[Reject H(;S|P* =]
SCPO(6+)



We assume that {6} cannot be negative for any j i.e. there cannot

be opposite direction treatment effects =» Hé3’4} 103 =6,=0
and 0% such that P°(0T) # () and PO(6) C P but PO(6F) # P
=» at least one subset with a positive treatment effect

+ one with a null effect

Hence,
If there are some subsets with treatment effect in S
=» likelier to select S

FWER= > Py:[Select S|Py [Reject H3|P* = S]
SCPO(61)
< Z Py—o[Select S]Ps—o[Reject Hy|P* = S]
SCPO(6+)

< ) Py—o[Select S]Py—q[Reject Hg |P* = S]
SCPpP



We assume that {6} cannot be negative for any j i.e. there cannot
be opposite direction treatment effects =» Hé3’4} 103 =6,=0
and 0% such that P°(0T) # () and PO(6) C P but PO(6F) # P
=» at least one subset with a positive treatment effect

+ one with a null effect

Hence,
FWER = > Py:[Select S|Py [Reject Hy|P* = S]
SCPO(6+)
< ) Ppo[Select S]Py_q[Reject Hy |P* = S]
SCPO(g+)
< Z Py—o[Select S]Py—o[Reject Hg|P* =S]= Olglobal

SCP
by design



two independent cohorts

L : Overall
) —_— Survival
k ; : )
P
! —_—
' —
' _
Start of Interim Final Calendar
study analysis analysis time
Stage 1 cohort Stage 2 cohort
Key: — Subjects randomised to Exp. Treatment

—  Subjects randomised to Control
. Death observed
o Censored observation.



p

Sﬁge_l\

Stop + reject Hy®

If YU such asSin U,
O 1-py)> ¢

Closed testing

with Simes or
pooling

else

Stage 2

e

N

Stage 2

Stop + reject H,®

If YUsuchasSin U,

Clpywpas) > &
and C(p5,p,s) > €,

Closed testing
with Simes or

pooling +
combination
of p-values

Stop + accept Hy®

)




Stage 1

If S={4} :
DifO (1 —pra)>c & L —praa) > & O —pro) >a &
®7Y(1 — p1,1234) > c1, then stop the trial by rejecting Hy

=» else proceed to stage 2

If S={3,4} :
=>if q)_l(]. — p1,34) >c & d)_l(l — p1,234) >c & d)_l(l — p1,1234) > C1,
then stop the trial by rejecting H

=» else proceed to stage 2

If S={2,3,4} :
> if ®1(1 — p123a) > a1 & (1 — p1,1234) > c1, then stop the trial by
rejecting Hy
= else proceed to stage 2
If S={1,2,3,4} :
= if ®71(1 — p1,1234) > c1, then stop the trial by rejecting Hs
=» else proceed to stage 2



Stage 2

If S={4} :
= if C(p1,4,p2,4) > 2 & C(p1,3a,p24) > 2 & C(p1,234,p2,4) > 2 &
C(p1,1234, P2,4) > C2 then stop the trial by rejecting Hg

=» else stop the trial by accepting Hg

If S={3.4} :
2> if C(p1,34,P2,34) >0 & C(P1,234,P2,34) >0 & C(P1,12347P2,34) > ¢, then
stop the trial by rejecting HS
= else stop the trial by accepting Hg
If S={2,3,4} :
= if C(p1,234, p2,234) > 2 & C(p1,1234, P2,234) > C2 then stop the trial by
rejecting Hy
= else stop the trial by accepting HS
If S={1,2,3,4} :
<> if C(p1,1234, p2,1231) > C» then stop the trial by rejecting Hy
= else stop the trial by accepting Hg



HOS : 0s < 0 is rejected overall at level agjopa
& each Héj is rejected at level agjopa for every subpopulation U
containing S, based on stage 1 and stage 2 data

=> test Hy : () HY at each stage
scu

Héi} 0, =0 Héj : 0y = 0 means V subset i € U,0; =0
Hence,
o if S={1,2,34}, Hy : 01 =0 =03 =0, =0,
o if S={2,3.4}, HS = HI"*Y N H* 10, =05 =0, =0,
o if S={3,4}, HS = HI"*Y N HIZ3 N HEY 10, =0, =0,
o if S={4}, Hy = HI"* N RPN HEY N HEY -0, = 0.



=» test HY : V subset i € U, 0; = 0 at each stage

Simes” method (Simes. 1986)

Noting m = number of subsets of U at stage 1, m" = number at stage 2 and
pk,u = p-value of U at stage k with ® the standard normal distribution,

Stage 1

m*pl’(j)

)

where p; (j) denotes the j™ p-value of cohort 1 in increasing order

@ calculate p1,u = minj=1, . m(

Stage 2

@ calculate p;,y = . min (M)
j=1,..,m*
where p; (j) denotes the j™ p-value of cohort 1 in increasing order
’
@ calculate po,y = min (2P,

j=1,....m’ J

where p (j) denotes the j™ p-value of cohort 2 in increasing order

& p1,u at stage 2 may differ from p; y at stage 1
p2,u = p2,s because enrichment = cohort 2



=» test HY : V subset i € U, 0; = 0 at each stage

Once p-values are estimated by Simes’ method or by a mere
pooling of the considered subsets, if we proceeded to stage 2:

=» combine the two stages p-values of each population U

Héj is rejected if C(Pl,U;P2,U) = W1217U + W2227U
= w1 - pru) + wme® (L - poy) > o,

where © is the standard normal distribution
and w1 and w» have to be pre-specified such that w? + w? =1

Usually, we set wy = wp = 0.5.
Note that C(pl’U, P2,U) = W121,U + WQZz’U ~ N(O, 1) under Héj.



Once the population selection performed at stage 1, how to
plan the final analysis ?

GSED A: Partial enrichment

All events stage 1 + events in S after IA = number of expected events

@ Stage 1 (5w 1n) @ events of S and events of 5¢
@ Stage 2 (srcr1n) : events of S

(considered by B.P. Magnusson & B. W. Turnbull)

GSED B: Full enrichment

Only events in S stage 1 + 2 = number of expected events
@ Stage 1 (s 1n) @ events of S

@ Stage 2 (ar..14) @ events of S

(better power in case of small S but more costly)



How to improve our design ?

Check 1 : futility test for S

@ add the condition : if Y15 < h */hs, remove the smaller
index subset and follow the S selection

Check 2 : heterogeneity check for S

@ make sure there is no opposite treatment effects between
subsets

& Computation of stopping boundaries must be adjusted
according to option A or B and the checks chosen !



1f Yy > 1 = V(Iy)

else

If Yy > 1= V()

else

If Yig > 1y = V(I43)

else

If ¥iq > I+ V(1)
—_—_—

000
[

else

(Futility)

where Yy; is the log-rank efficient score and Iy; is the Fisher's information of subset j at stage 1.



I Yy > 4= V()

else

If Yoo > b= V(I)

else

If ¥i5 = 1 = V(I 3)

else

If ¥ > 1+ V(L)
—_—_—

1004
[

else

(furility)

where Yy; is the log-rank efficient score and lyj is the Fisher's information of subset j at stage 1.



scenario

Iy value | futility (%) |

Hop small 28.98
medium 22.88 .
high 7.48 A major drawback of GSED
[ Constant 0.8 [ high | 7.86 | . .
— — — * .not fle.xnbl.e. stopping bound-
medium 10.00 aries derivation extremely ardu-
high 7.98 ous
Linear+threshold 0.7 small 6.20
medium 8.00 o PG—O[P* — S]
Linear+threshold 0.8 small 12.84 e H
i 1510 modifications
high 5.78 e .
£ @ /1 modifications
| deleterious 0.8 | small { 9.38 |
i LO00) @ u; and w2 modifications
deleterious+threshold 0.6 small 6.30
medium 5.02 i
deleterious+threshold 0.7 small 10.96 - checks 1 & 2 W|thdrawn
medium 7.32
deleterious+threshold 0.8 small 16.42
medium 10.14

futility is the amount of times the selected population S
does not pass the futility test: Yy > lh * \/I1s.
(5,000 trial simulations)



HE : there is no positive treatment effect in the full population
H(f . there is no positive treatment effect in the subpopulation S

GSED
Stage 1

@ select the subpopulation S,

using futility boundary A
e reject Hy or proceed to
stage 2, using efficacy
boundary
Enrichment
Stage 2

o conclude about Hy,
using efficacy boundary u

GSD

Stage 1
e futility option added, using
/1 of GSED
e reject HY or proceed to
stage 2, using efficacy
boundary ¢
Usual accrual
Stage 2

e conclude about Hf,
using efficacy boundary ¢,



constant scenarios :

e GSEDA =GSD05&06 e GSD > GSED A0.7&0.8
e Simes > pooling 0.5 e Simes = pooling 0.6
e pooling > Simes 0.7 & 0.8

linear scenarios :
e GSD > GSED A duration, sample size e GSED A > GSD power, good, bad
e pooling > Simes power, good

linear+threshold scenarios :
e GSD > GSED A duration, sample size e GSED A > GSD power, good, bad
e Simes > pooling all

deleterious scenarios :
e GSD > GSED A duration, sample size e GSED A > GSD power, good, bad
e Simes > pooling duration, sample size, bad
e pooling > Simes power

deleterious-+threshold scenarios :
e GSD > GSED A duration, sample size e GSED A > GSD power, good, bad
e Simes > pooling all

GSED B < GSED A = too small rises in power and good outcomes for huge

averaged sample size and study duration



e averaged duration of study \, when /; value ~

o final analysis date “\, when /1 value \,

o probability to stop at stage 1  when /i value &

e averaged sample size \, when /; value *

e probability to reject any Hg /" when /; value is medium

constant scenarios :
e good outcomes 7 when /; values N\

linear scenarios :
e good outcomes ~ when /; value is medium or low (HR=0.5 & 0.6),
medium or high (HR=0.7 & 0.8)
e bad outcomes™, when /; values /* (not defined for HR=0.5 & 0.6 & 0.7)

linear+threshold scenarios :
e good outcomes * when /; value is medium or high
e bad outcomes™, when /; values ~

deleterious scenarios :
e good outcomes ~ when /; value is medium or high
e bad outcomes™, when /; values *

deleterious-+}threshold scenarios :
e good outcomes ~ when /; value

e bad outcomes™, when /; values ~



[ scenario design [ Iy value [ Comment
[ Ho [ [ all designs control the FWER
constant 0.8 A/pool low " good rate, power/ duration sample size
0.7 A/pool low " good rate power/ duration sample size
0.6 A/pool/Simes low medium /3 values are also good
0.5 A low 7 medium Simes, high /1 values are also good
linear 0.8 Simes high greatly N\, bad rate (GSED A greatly /' power)
disappointing performance on good/bad rates
0.7 A medium / high " good rate,power/ duration,sample
0.6 A low / medium " slightly good rate/ ~ slightly power
0.5 A low / medium low /3 value to minimize the maximum duration
linear+th 0.8 Simes high \\ bad rate (GSED A * power)
disappointing performance on good/bad rates
0.7 A high (Simes ™\ bad rate,
medium Iy value /' power, good rate)
0.6 A medium / high " power,good rate/™\ bad rate,duration,sample
0.5 A medium / high ' power/

\\ bad rate, duration, sample, " good rate




[ scenario [ design Iy value [ Comment
deleterious 0.8 A high " power with respect to Simes

_ disappointing performance on good/bad rates

0.7 A medium / high " good rate, power/
_ \ duration,sample,bad rate

0.6 A medium / high " good rate,power/
_ \\ duration,sample,bad rate

0.5 A medium / high ' good rate,power/

\« duration,sample,bad rate

deleterious+th 0.8
0.7

0.6

0.5

A/Simes/pool high many endings for futility
A high optimizing all criteria
disappointing performance on good/bad rates
_ (medium Iy value ' power)
A medium / high " power/
¢ bad rate,duration,sample, * good rate
_ (Simes unfortunately \, power)
A medium / high ' power/

\\ bad rate,duration,sample,  good rate




Bias source
population selection process at stage 1

Configuration

4 biomarker subsets, two-stage study

Accomplished work
@ averaged unconditional bias per subset
@ averaged bias per subset conditional on the selected population
@ Mean Squared Error of unadjusted and adjusted estimators

e empirical coverage probabilities of 90% confidence intervals



Simulate B clinical trials {
For every trial {
Vj € [1.,4], calculate Maximum Likelihood Estimator (MLE) 6;
Then simulate B samples, using the estimated 0; as 0; {
Vj € [1.4], calculate the MLE of the b*™ trial 0}

B
Which leads to the mean MLE for 6; : =3 Z

) Hence 0 = ; — (05 — 0;), where (05} — éj) is the simulated bias estimate.
The green part can be repeated with §** = (;%, ..., 0;*) instead of 6; in the
B samples simulation, which leads to 0*2 =0 — (9 — 0.

}

Finally, compute the Mean-Squared Error (MSE) for the B trials.

Its 90% confidence intervals: using the 5% and 95% percentiles of the B samples
simulations.

Probability whether the true treatment effect 0; is within them: based on all the B
trial simulations.



our attempts have not materialized into convincing results

according to the publication: ‘Concerning estimation, topics for
further research include development of improved bootstrap
procedures for unbiased estimation and confidence intervals [...]’

=» the authors agree that estimation issues remain unanswered
and very difficult to address

bias and confidence intervals are known to be a very difficult
component of adaptive designs

not clear to us at which extent estimation issues should be
explored and satisfactorily solved for endorsement by regulators
in pivotal settings
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