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Introduction
Clinical trial and missing data

I Primary analysis: study of the principal target outcome according
to the ITT(Intend-To-Treat) concept.

I Sensitivity analysis: study of the impact the outcome of a
variable from the primary analysis has if it was different from
what it is assumed to be.

Origin of missing data
I Huge quantities of data collected⇒ missing data⇒ biased

results

I Not related to the study:
I human error in recording data
I a patient moves to another city or country

I Related to the study:
I a patient feels pain
I he considers the treatment to be inefficient
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Introduction
Types of missingness

I MCAR missing completely at random: missingness is completely
independent of both observed and unobserved data.

I a subject dropouts because he moves to another city or country.

I MAR missing at random: missingness is considered
independent of unobserved data, given observed data.

I a subject drops out from the study because he considers, from
previous visits, that the treatment is not efficient.

I MNAR missing not at random: missingness is related to
unobserved data.

I a subject decides to drop out because of sudden unobserved
side-effects from a drug or because of sudden unrecorded drop in
efficacy.
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Mixed models
Mixed models for repeated measures

Characteristics
I Specification of mixed linear models: time is a classification

variable.
I Longitudinal data: measurements are collected for different

patients at different time points.
I Correlation between repeated visits.
I Variance-covariance used to estimate the outcome at each visit.

The model
I Mixed model: Y = Xβ + Zγ + e.
I No random effects: Z = 0.
I MMRM: Cov [Y ] = Cov [e] = M where M is a diagonal block

matrix.

Different covariance structures are in backup slide.
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Mixed models
Pattern-mixture models

I R: apparent time of dropout of a subject.
I θ: set of model parameters.
I Y: Yobs and Ymis.

Marginal distribution:

f (Y obs,R) =

∫
f (Y obs,Y mis,R) dY mis

=

∫
f (Y obs,Y mis;θ)︸ ︷︷ ︸
outcome data model

P(R|Y obs,Y mis; γ)︸ ︷︷ ︸
missing data model

dY mis

Factorization of the joint likelihood:

f (Y obs,Y mis,R) = f (Y obs,Y mis|R)P(R)

⇒ One model for each pattern of missingness.
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Application to missing data
Notations

Notations used in the following presentation:
I n subjects
I J+1 treatment groups
I T postbaseline measurements of the outcome variable
I Ai = 0 for placebo and Ai = j for active treatment group j where j =

1,...,J
I (yi,0, yi,1,...,yi,T ) full response vector for subject i
I Li data pattern corresponding to the last postbaseline time point

with observed data for subject i
I yi,s = (yi,0, yi,1,...,yi,s) partial vector of the full response
I φj = Pr(Ai=j)
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Application to missing data
Notations

I π
(t)
i = Pr(Li=t | Ai=j) where j = 1,...,J and t=1,...,T

I σj,s treatment effect for active treatment j at postbaseline time
point s

I αs intercept
I βs=(βs,0,...,βs,s−1) regression coefficients
I σ2

s residual variance
I θ set of model parameters
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Application to missing data
Model definition and Delta-method

I Conditional distribution of an observed postbaseline
measurement given the measurement history within each
observed data pattern and treatment group:
for 1 ≤ s ≤ t ≤ T and j=0,...,J

yi,s|y i,s−1,Li = t ,Ai = j ,θ ∼ N(αs + β′
sy i,s−1 + γj,sI(j > 0), σ2

s )

I Missing data distribution is the following:
for 1 ≤ t ≤ s ≤ T and j=0,...,J

yi,s|y i,s−1,Li = t ,Ai = j ,θ ∼ N(αs+β′
sy i,s−1+(γj,s+∆j,s)I(j > 0), σ2

s )

∆j,s: delta-adjustment for treatment j at time point s.

Different possibilities
I ∆j,s= −Φγj,s

I ∆j,s= 0.5Φσs

I ∆j,s= ΦC, where C is a fixed threshold
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Power calculation
Introduction

I Power: probability of the trial to put into relief a difference
between a placebo and a treatment, or between treatments, that
does exist.

Regression parameters estimates
Covariance matrix of parameters estimates

Partial derivatives of treatment effects estimates
⇓

Treatment effects
Associated covariance matrix

⇓
Power
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Power calculation
MMRM Application

MMRM with PROC MIXED⇒

I δ?j,s expected treatment differences under MAR at postbaseline
time points

I ωu,v conditional variances and covariances of postbaseline
measurements given the baseline measurements

⇒


βs regression parameters
γs treatment effects for active groups at time point s
σ2

s residual variance

The details of formulas and demonstration are in backup slides.
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Power calculation
Treatment effects

I Transformed coefficients: ξs,t =
∑s−1

l=t βs,lξl,t , for 1 ≤ t ≤ s-1.
I Overall mean at each time point within each treatment group:
µj,s = E(yis|Ai = j) =

∑T
t=1 π

(t)
j µ

(t)
j,s.

I Total probability of patterns with missing data at time point l in
treatment group j: π(<l)

j =
∑l−1

t=1 π
(t)
j .

I Treatment differences in overall means: δj,s = µj,s − µ0,s.

Under MNAR: δj,s =
∑s

l=1 ξs,l (γj,l + ∆j,lπ
(<l)
j )

Under MAR: δ?j,s =
∑s

l=1 ξs,lγj,l
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Power calculation
Treatment effects

Estimates:
I Regression parameters: (α̂s, β̂s, γ̂s, σ̂

2
s ) for s=1,...,T.

I Treatment-specific pattern probabilities: π̂(t)
j = n(t)

j /nj .

I First method: ∆̂j,s= −Φγ̂j,s.
I Second method: ∆̂j,s= 0.5Φσ̂s.
I Third method: ∆̂j,s= ΦC.

Under MNAR: δ̂j,s =
∑s

l=1 ξ̂s,l (γ̂j,l + ∆̂j,l π̂
(<l)
j )

Under MAR: δ̂?j,s =
∑s

l=1 ξ̂s,l γ̂j,l
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Power calculation
Covariance matrix

Block matrices of covariances and partial derivatives:

V =

 Cov(π̂j ) 0 0
0 Cov_reg 0
0 0 Var(σ̂2

s )


P =

(
0 ∂δ?

∂β
∂δ?

∂γ 0
∂δ
∂π

∂δ
∂β

∂δ
∂γ 0

)

Covariance of treatment effects = PVP ′ (1)

Details of covariances and derivatives in backup slides.
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Power calculation
Power

Power associated to the design of a new trial:

H0: δj ≤ 0 against H1: δj > 0

Power⇐⇒ probability to detect a significant treatment effect

Power(j) = P(zj ≥ q1−α/2|H1 : δj = δj,T )

= P(
δ̂j − δj,T√

Var(δ̂j )
≥ q1−α/2 −

δj,T√
Var(δ̂j )

)

= 1− Φ(q1−α/2 −
δj,T√

Var(δ̂j )
)

I z-statistic: zj =
δ̂j√

Var(δ̂j )
.

I α: Type I error.
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LDL Cholesterol Study
Dataset

Longitudinal data
I LDL cholesterol measurements in mmol/L
I 284 subjects with day 1 visit and at least one postbaseline

measurement
I 5 postbaseline measurements (Weeks 4, 8, 12, 16, 24)
I Variable of interest: difference from baseline in %
I Treatment hyper efficient: diff_pct_chg = diff_pct + 40 for treated

Figure: Used Dataset Extract
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LDL Cholesterol Study
MMRM Results

MMRM with PROC MIXED⇒ δ?j,s and ωu,v

Unstructured case:

Diagonal coefficients increase
globally

⇓
Variances tend to increase as

visits are farther apart

Figure: Estimated covariance matrix
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LDL Cholesterol Study
MMRM Results

Figure: Estimated correlation matrix Figure: Estimates

Results for heterogeneous and autoregressive (1) structures are in
backup slides.
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LDL Cholesterol Study
Power Function

Function powerpara inputs
I α: level of significance.
I C: threshold in the expression of ∆ for the third delta-method.
I n: number of subjects.
I Ω: covariance matrix of postbaseline measurements given the

baseline measurement.
I T: number of postbaseline time points
I Ja: number of active treatments.
I δ?: expected treatment differences under MAR at postbaseline

time points.
I Pp: treatment-specific pattern probabilities. (Example)
I φ: randomization probabilities.
I PhiM: Φ, fraction used in the delta-method.
I Dmethod: delta-method used, this value can be 1, 2 or 3.
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LDL Cholesterol Study
Different delta-adjusted methods

First method: ∆j,s = −Φγj,s

Figure: Gamma

I γj,s < 0 for s=1,..,4
I γj,5 > 0→ high influence on results
I Difference between placebo and treatment:
δj,s =

∑s
l=1 ξs,l (γj,l + ∆j,lπ

(<l)
j )

γj,s > 0⇒ negative penalties⇒ lower δj,s

⇒ advantage to the treatment and higher power
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LDL Cholesterol Study
Different delta-adjusted methods

Figure: Power with respect to Φ for method 1, unstructured covariance

Φ increases⇒ negative ∆j,s decreases⇒ power increases

Alice Gosselin | Handling of missing data in clinical trials



21

LDL Cholesterol Study
Different delta-adjusted methods

2nd and 3rd methods: ∆j,s = 0.5Φσs and ∆j,s = ΦC

Φ increases⇒ positive ∆j,s increases⇒ higher δj,s

⇒ advantage to the placebo and lower power

Figure: Power with respect to Φ for method 2 and 3 (C=3), unstructured
covariance
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LDL Cholesterol Study
Impact of the missing data pattern probabilities

Power evolutions with different repartitions of dropouts:

Figure: Power with respect to
completers rate with method 1 and
unstructured covariance

Figure: Power with respect to
completers rate with method 1 and
AR(1) covariance
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LDL Cholesterol Study
Impact of the missing data pattern probabilities

Figure: Power with respect to completers rate with method 2

More completers⇒ higher power

Same results with method 3.
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LDL Cholesterol Study
Impact of the time profile of MAR treatment effects

For different time profiles:

Figure: Power with respect to time
profile with method 1 and
unstructured covariance

Figure: Power with respect to time
profile with method 1 and AR(1)
covariance

Weak effect at the beginning⇒ more difficult to detect it
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Conclusion

I MAR assumption: unverifiable from observed data, sometimes
questionable

I Test its robustness: MNAR through sensitivity analyses
I MMRM under MAR
I Delta-adjustment

I Power calculation under MNAR

I Sample size estimation
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Thank you for your attention !
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The variance-covariance structure

Unstructured
I Heterogeneous variances
I Heterogeneous covariances
I J(J+1)/2 parameters

 σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3



Toeplitz
I Homogeneous variances
I Covariances depend on lag
I J parameters

σ2 σ1 σ2
σ1 σ2 σ1
σ2 σ1 σ2


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The variance-covariance structure

Heterogeneous Toeplitz
I Heterogeneous variances
I Covariances depend on lag
I 2J-1 parameters

 σ2
1 σ1σ2ρ1 σ1σ3ρ2

σ1σ2ρ1 σ2
2 σ2σ3ρ1

σ2σ3ρ2 σ2σ3ρ1 σ2
3



Autoregressive AR(1)
I Homogeneous variances
I Covariances decrease as

visits become farther apart
I 2 parameters

 σ2 σ2ρ σ2ρ2

σ2ρ σ2 σ2ρ
σ2ρ2 σ2ρ σ2



Back
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Power calculation
MMRM Application

For s = 2,...,T: βs,1
...

βs,s−1

 =

 ω1,1 . . . ω1,s−1
. . . . . . . . .

ωs−1,1 . . . ωs−1,s−1

−1
 ωs,1

...
ωs,s−1



For j=1,...,J and s=1,...,T:

γj,s = δ?j,s −
s−1∑
l=1

βs,lδ
?
j,l

For s=1,...,T:

σ2
s = ωs,s −

s−1∑
l=1

βs,lωs,l
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Power calculation
MMRM Application

Normal Multivariate Distribution

Y: Yobs and Ymis

Y ∼ NMV (µ,Σ)

µ =

(
µobs
µmis

)
Σ =

(
Σobs,obs Σobs,mis
Σmis,obs Σmis,mis

)

Goal: find the distribution of Ymis | Yobs

f (Y mis|Y obs) =
f (Y obs,Y mis)

f (Y obs)
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Power calculation
MMRM Application

Linear combination of Yobs and Ymis, independent of Yobs

Z = Y mis − aY obs

a such that Z and Yobs are independent:

0 = Cov(Z ,Y obs)

= Cov(Y mis − aY obs,Y obs)

= Cov(Y mis,Y obs)− aCov(Y obs,Y obs)

= Σobs,mis − aΣobs,obs

⇒ a = Σobs,misΣ−1
obs,obs
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Power calculation
MMRM Application

E(Z ) = E(Y mis)− Σobs,misΣ−1
obs,obsE(Y obs)

= µmis − Σobs,misΣ−1
obs,obsµobs

Var(Z ) = Var(Y mis) + Var(aY obs)− 2Cov((Y mis,aY obs)

= Σmis,mis + aΣobs,obsa′ − 2Σobs,misΣ−1
obs,obsΣmis,obs

= Σmis,mis + Σobs,misΣ−1
obs,obsΣobs,obsΣ−1

obs,obsΣmis,obs

− 2Σobs,misΣ−1
obs,obsΣmis,obs

= Σmis,mis − Σobs,misΣ−1
obs,obsΣmis,obs
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Power calculation
MMRM Application

Y mis = Z + aY obs:

E(Y mis|Y obs = yobs) = E(Z ) + ayobs

= µmis + a(yobs − µobs)

Var(Y mis|Y obs = yobs) = Var(Z )

= Σmis,mis − Σobs,misΣ−1
obs,obsΣmis,obs

Conidtional Distribution

Y mis|Y obs = yobs

∼ N(µmis + a(yobs − µobs),Σmis,mis − Σobs,misΣ−1
obs,obsΣmis,obs)

Alice Gosselin | Handling of missing data in clinical trials



34

Power calculation
MMRM Application

Actual model:
yi,1

...
yi,s−1
yi,s

 |yi,0,Ai = j ∼ Normal Multivariate(∆,Ω)


yi,0

...
yi,s−1
yi,s

 =

(
y i,s−1

yi,s

)
∆ =

 ξ1 + δ?j,1I(j > 0) + θ1yi,0
...

ξs + δ?j,sI(j > 0) + θsyi,0



Ω =


ω1,1 . . . ω1,s−1 ω1,s
. . . . . . . . . . . .

ωs−1,1 . . . ωs−1,s−1 ωs − 1, s
ωs,1 . . . ωs,s−1 ωs,s

 =

(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)
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Power calculation
MMRM Application

From the article:

yi,s|y i,s−1,Li = t ,Ai = j , θ ∼ N(αs + β′sy i,s−1 + γj,sI(j > 0), σ2
s )

with the following equivalences:

µ ∼ ∆

Σ ∼ Ω

For s=2: µmis + a(yobs − µobs) = ξ2 + δ?j,2I(j > 0) + θ2yi,0

+ω1,2ω
−1
1,1(yi,1 − ξ1 − δ?j,1I(j > 0)− θ1yi,0)

By identification of terms in front of I(j > 0), in front of y and variance:

γj,2 = δ?j,2 − ω1,2ω
−1
1,1δ

?
j,1

β2,1 = ω1,2ω
−1
1,1

σ2
2 = ω2,2 − β2,1ω2,1

⇒ Iteration

Back
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Power calculation
Covariance matrix

Asymptotic covariance matrix of the estimated pattern probabilities in
treatment j:

Cov(π̂j ) = n−1φ−1
j [diag(πj )− πjπ

′
j ]

Residual variance:

Var(σ̂2
s ) = n−1(π(≥l))−12σ4

s

as (β̂#
s , γ̂s) are independent of the estimates of the residual variance.

I Total probability of patterns with observed data at time point s
pooled across treatment groups: π(≥l) =

∑J
j=0 φj

∑T
t=s π

(t)
j

I β#
s = (βs,1,...,βs,s−1) for s=2,...,T.
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Power calculation
Covariance matrix

I µs;0 =
∑J

j=0 φj (
∑T

t=s π
(t)
j µ

(t)
j,0)/

∑J
j=0 π

(≥s)
j : the weighted average

of pattern-specific baseline means among all patterns with
observed data at time point s.

I δ?s;u: the weighted average of treatment effects under MAR at
postbaseline time point u with weights proportional to the
probability of observing yis for u=1,...,s-1.
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Power calculation
Covariance matrix

Asymptotic covariance matrix of the regression parameters (β̂#
s , γ̂s):

Cov_reg = n−1σ2
s (I#s )−1
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Power calculation
Covariance matrix

Asymptotic covariance matrix of the regression parameters (β̂#
s , γ̂s):

Cov_reg = n−1σ2
s (I#s )−1

For s=1,...,T, u,v=1,...,s-1 and k, k’=1,...,J:

I#s;u,v =
J∑

j=0

φjπ
(≥s)
j [(δ?j,u − δ?s;u)(δ?j,v − δ?s;v ) + ωu,v ]

I#s;s−1+k,v = φkπ
(≥s)
k (δ?k,v − δ?s;v )

I#s;s−1+k,s−1+k ′ = φkπ
(≥s)
k I(k = k ′)− φkπ

(≥s)
k φk ′π

(≥s)
k ′ /

J∑
j=0

φjπ
(≥s)
j

These equations are valid if µs;0 =
∑T

t=s π
(t)
j µ

(t)
j,0/π

(≥s)
j .
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Power calculation
Covariance matrix

I Partial derivatives of the efficacy estimands with respect to the
regression parameters:

∂δ?j,T
∂βs,t

=
∑T

l=1(
∂ξT ,l
∂βs,t

)γj,l and ∂δ?j,T
∂γj,s

= ξT ,s.

I Partial derivatives of the effectiveness estimands with respect to
the pattern probabilities:

∂δj,T

∂π
(s)
j

= −
∑s

l=1 ξT ,l ∆j,l .

I Partial derivatives of the effectiveness estimands with respect to
the regression parameters:
for j=1,...,J and 1 ≤ t < s ≤ T

∂δj,T
∂βs,t

=
∑T

l=1(
∂ξT ,l
∂βs,t

)(γj,l + ∆j,lπ
(<l)
j )

∂δj,T

∂γj,s
=

{
ξT ,s(1− Φπ

(<s)
j ) if ∆j,s = −Φγs,

ξT ,s otherwise
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Power calculation
Covariance matrix

I Partial derivatives of the effectiveness estimands with respect to
the residual variance:

∂δj,T

∂σ2
s

=

{
0.25ξT ,sΦσ−1

s π
(<s)
j if ∆j,s = 0.5Φσs,

0 otherwise

And, for 1 ≤ v ≤ u ≤ T, 1 ≤ t ≤ s ≤ T:

∂ξu,v

∂βs,t
=


ξt,v if u = s > t ≥ v ,∑u−1

j=max(s,v+1) βu,j
∂ξj,v
∂βt,s

if u > max(s, v),

0 otherwise

Back
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LDL Cholesterol Study
MMRM Results

Figure: Estimated covariance matrix
for heterogeneous structure

Figure: Estimated covariance matrix
for autoregressive (1) structure
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LDL Cholesterol Study
MMRM Results

Figure: Estimated correlation matrix
for heterogeneous structure

Figure: Estimated correlation matrix
for autoregressive (1) structure
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LDL Cholesterol Study
MMRM Results

Figure: Estimates for
heterogeneous structure

Figure: Estimates for
autoregressive (1) structure

Back
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LDL Cholesterol Study
Power Function

Figure: Pattern probabilities of the dataset

I 92% of subjects in the placebo group completed the study
I 94.2% of subjects in the treatment group completed the study

Back
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LDL Cholesterol Study
Impact of the missing data pattern probabilities

I Different completers rate
I Different repartition of dropouts for the rest of the subjects: early

dropouts, uniform dropouts and late dropouts.

For example with 40% of completers rate:

Figure: Uniform
dropouts

Figure: Early dropouts Figure: Late dropouts

Back
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LDL Cholesterol Study
Impact of the missing data pattern probabilities

Figure: Power with respect to completers rate with method 3 and C=3

Back
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LDL Cholesterol Study
Impact of the time profile of MAR treatment effects

I Different time profiles of MAR treatment effects

Figure: Treatment effect
from the beginning

Figure: Treatment effect
starting later

Figure: Treatment effect
starting later

Figure: Treatment effect starting later Figure: Treatment effect at the end

Back
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