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Background on random forests

Random forests are a class of algorithms used to solve regression and classification
problems

They are often used in applied fields since they handle high-dimensional
settings.

They have good predictive power and can outperform state-of-the-art meth-
ods.
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Background on random forests

Random forests are a class of algorithms used to solve regression and classification
problems

They are often used in applied fields since they handle high-dimensional
settings.

They have good predictive power and can outperform state-of-the-art meth-
ods.

But mathematical properties of random forests remain a bit magical.
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General framework of the presentation

Regression setting

We are given a training set Dn = {(X1,Y1), ..., (Xn,Yn)} where the pairs
(Xi ,Yi ) ∈ [0, 1]d × R are i .i .d . distributed as (X ,Y ).

We assume that

Y = m(X) + ε.

We want to build an estimate of the regression function m using random
forest algorithm.
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How to build a tree?

Trees are built recursively by splitting the current cell into two children
until some stopping criterion is satisfied.
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How to build a tree?

Trees are built recursively by splitting the current cell into two children
until some stopping criterion is satisfied.
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How to build a tree?

Breiman Random forests are defined by

1 A splitting rule : minimize the square loss.

2 A stopping rule : leave exactly one point in each cell.
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How to perform splits of Breiman’s forests?

For a cut direction j ∈ {1, . . . , d} and a split position z ∈ [0, 1] , the
criterion takes the form

Ln(j , z) =
1

Nn(A)

n∑
i=1

(
Yi − ȲAL

1
X

(j)
i <z
− ȲAR

1
X

(j)
i ≥z

)2

,

where

AL = {x ∈ A : x(j) < z} and AR = {x ∈ A : x(j) ≥ z}
ȲA is the average of the Yi ’s belonging to A.

Nn(A) is the number of points in A
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How to perform splits of Breiman’s forests?

An example: j = 1 and z = 0.5.
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Construction of random forests

Randomness in tree construction

Resample the data set via bootstrap;

At each node, preselect a subset of mtry variables eligible for
splitting.
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Literature

Random forests were created by Breiman [2001].

Many theoretical results focus on simplified version on random forests,
whose construction is independent of the dataset.
[Biau et al., 2008, Biau, 2012, Genuer, 2012, Zhu et al., 2012, Arlot
and Genuer, 2014].

Analysis of more data-dependent forests:

Asymptotic normality of random forests [Wager, 2014, Mentch and
Hooker, 2015].
Variable importance [Louppe et al., 2013].
Rate of consistency [Wager and Walther, 2015].

Literature review on random forests:

Methodological review [Criminisi et al., 2011, Boulesteix et al., 2012].
Theoretical review [Biau and Scornet, 2016].
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A tree

Tree estimate:

mn(x,Θ) =
n∑

i=1

1Xi∈An(x,Θ)

Nn(x,Θ)
Yi

where Nn(x,Θ) is the number of points in the cell An(x,Θ).
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A finite forest

. . .︸ ︷︷ ︸
M-Finite forest

M-Finite forest estimate :

mM,n(x,Θ1, . . . ,ΘM) =
1

M

M∑
m=1

mn(x,Θm).
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A finite forest

. . .︸ ︷︷ ︸
M-Finite forest

M-Finite forest estimate :

mM,n(x,Θ1, . . . ,ΘM) =
1

M

M∑
m=1

mn(x,Θm).

Conditionally on Dn, the estimate mM,n depends on Θ1, . . . ,ΘM .
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Single tree versus a forest

A forest is not worse than a single tree.

Theorem

We have

E[m(X)−mM,n(X,Θ1, . . . ,ΘM)]2 ≤ E[m(X)−mn(X,Θ)]2,

that is the risk of a forest is lower than the risk of each individual tree
that composed the forest.

Proof.

Jensen’s inequality.
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Toward infinite forest

. . .︸ ︷︷ ︸
M-Finite forest

M-Finite forest estimate :

mM,n(x,Θ1, . . . ,ΘM) =
1

M

M∑
m=1

mn(x,Θm) →
M→∞

EΘ [mn(x,Θ)]︸ ︷︷ ︸
m∞,n(x)
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Finite forest versus infinite forest

Infinite forest is better than finite forest.

(H1) One has

Y = m(X) + ε,

where ε is a centered Gaussian noise with finite variance σ2, independent
of X.

Theorem [Scornet, 2016]

Assume that (H2) is satisfied. Then, for all M, n ∈ N?,

R(mM,n) = R(m∞,n) +
1

M
EX,Dn

[
VΘ [mn(X,Θ)]

]
.

In particular,

0 ≤ R(mM,n)− R(m∞,n) ≤ 8

M
×
(
‖m‖2

∞ + σ2(1 + 4 log n)
)
.
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Different types of forests

Centred forest

Median forests Breiman’s forests

Independent of Xi and Yi Independent of Yi Dependent on Xi and Yi

Erwan Scornet Random forests



Different types of forests

Centred forest

Median forests Breiman’s forests

Independent of Xi and Yi

Independent of Yi Dependent on Xi and Yi

Erwan Scornet Random forests



Different types of forests

Centred forest

Median forests Breiman’s forests

Independent of Xi and Yi

Independent of Yi Dependent on Xi and Yi

Erwan Scornet Random forests



Different types of forests

Centred forest

Median forests

Breiman’s forests

Independent of Xi and Yi

Independent of Yi Dependent on Xi and Yi

Erwan Scornet Random forests



Different types of forests

Centred forest

Median forests

Breiman’s forests

Independent of Xi and Yi

Independent of Yi

Dependent on Xi and Yi

Erwan Scornet Random forests



Different types of forests

Centred forest

Median forests

Breiman’s forests

Independent of Xi and Yi

Independent of Yi

Dependent on Xi and Yi

Erwan Scornet Random forests



Different types of forests

Centred forest Median forests Breiman’s forests

Independent of Xi and Yi

Independent of Yi

Dependent on Xi and Yi

Erwan Scornet Random forests



Different types of forests

Centred forest Median forests Breiman’s forests

Independent of Xi and Yi Independent of Yi Dependent on Xi and Yi

Erwan Scornet Random forests



Different types of forests

Centred forest Median forests Breiman’s forests

Independent of Xi and Yi Independent of Yi Dependent on Xi and Yi

Erwan Scornet Random forests



1 Construction of random forests

2 Centred Forests

3 Median forests

4 Consistency of Breiman forests

5 Minimax Mondrian-type random forest

6 Random forests and kernel methods

7 References

Erwan Scornet Random forests



A single tree

For a tree whose construction is independent of data, if

1 diam(An(X))→ 0, in probability;

2 Nn(An(X))→∞, in probability;

then the tree is consistent, that is

lim
n→∞

E [mn(X)−m(X)]2 = 0.
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Consistency of purely random forests

Theorem [Biau et al., 2008]

Consider a totally non adaptive forest of level k . Assume that

diam(An(X,Θ))→ 0, in probability.

Then, providing k →∞ and 2k/n→ 0, the infinite random forest is
consistent, that is

R(m∞,n)→ 0 as n→∞.
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Centered forests

Theorem (Biau [2012])

Under proper regularity hypothesis, provided k →∞ and n/2k →∞, the
centred random forest is consistent.

→ Forest consistency results from the consistency of each tree.
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Stone Theorem

Consider an estimate of the form

mn(x) =
n∑

i=1

Wni (x)Yi .

Theorem [Stone, 1977]

Assume that the weights Wni are nonnegative and sum to one. Then the
estimate mn is consistent if and only if:

1 There is constant C such that, for every measurable function
g : [0, 1]d → R with E|g(X)| <∞,

E
[ n∑

i=1

Wni (X)|g(Xi )|
]
≤ CE|g(X)|, for all n ≥ 1.

2 For all a > 0,
∑n

i=1 Wni (X)1‖Xi−X‖>a → 0, in probability.

3 max1≤i≤n Wni (X)→ 0, in probability
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Stone theorem for a single tree

For a tree estimate

mn(x) =
n∑

i=1

Yi

1Xi∈An(x,Θ)

Nn(x,Θ)

that is

Wni (x) =
1Xi∈An(x,Θ)

Nn(x,Θ)
.

1 is ok.
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2 To check condition (2), note that, for all a > 0,

E

[
n∑

i=1

W∞ni (X)1‖X−Xi‖∞>a

]
=E

[
n∑

i=1

1
X

Θ↔Xi

Nn(X,Θ)
1‖X−Xi‖∞>a

]

=E

[ n∑
i=1

1
X

Θ↔Xi

Nn(X,Θ)
1‖X−Xi‖∞>a

× 1diam(An(X,Θ))≥a/2

]
,

because 1‖X−Xi‖∞>a1diam(An(X,Θ))<a/2 = 0. Thus,

E

[ n∑
i=1

W∞ni (X)1‖X−Xi‖∞>a

]
≤ E

[
1diam(An(X,Θ))≥a/2

×
n∑

i=1

1
X

Θ↔Xi
1‖X−Xi‖∞>a

]
≤ P

[
diam(An(X,Θ)) ≥ a/2

]
,

which tends to zero, as n→∞, by assumption.
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Proof of (3)

The tree partition has 2k cells, denoted by A1, . . . ,A2k . For 1 ≤ i ≤
2k , let Ni be the number of points among X,X1, . . . ,Xn falling into Ai .
Finally, set S = {X,X1, . . . ,Xn}. Since these points are independent and
identically distributed, fixing the set S (but not the order of the points)
and Θ, the probability that X falls in the i-th cell is Ni/(n + 1). Thus, for
every fixed t > 0,

P
[
Nn(X,Θ) < t

]
= E

[
P
[
Nn(X,Θ) < t

∣∣∣S,Θ]]
= E

[ ∑
i :Ni<t+1

Ni

n + 1

]

≤ 2k

n + 1
t.

Thus, by assumption, Nn(X,Θ)→∞ in probability, as n→∞.
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Proof of (3)

At last, to prove (3), note that,

E

[
max

1≤i≤n
W∞ni (X)

]
≤ E

[
max

1≤i≤n

1Xi∈An(X,Θ)

Nn(X,Θ)

]
≤ E

[
1Nn(X,Θ)>0

Nn(X,Θ)

]
→ 0 as n→∞,

since Nn(X,Θ)→∞ in probability, as n→∞.
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Consistency of centred random forest

Estimation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
mcc
∞,n(X)− m̄cc

∞,n(X)
]2 ≤ Cσ2 2kn

nk
1/2
n

Approximation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
m̄cc
∞,n(X)−m(X)

]2 ≤ 2dL2.2−
0.75kn
d log 2 + ‖m‖2

∞e−n/2kn
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Estimation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
mcc
∞,n(X)− m̄cc

∞,n(X)
]2 ≤ Cσ2(log2 n)−1/2

Approximation error [Biau, 2012]

Under proper assumptions on the regression model,
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Consistency of centred random forest

If the forest is fully grown, that is, if kn = blog2 nc

Estimation error [Biau, 2012]

Under proper assumptions on the regression model,

E
[
mcc
∞,n(X)− m̄cc

∞,n(X)
]2 ≤ Cσ2(log2 n)−1/2

Approximation error [Biau, 2012]

Under proper assumptions on the regression model,
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[
m̄cc
∞,n(X)−m(X)

]2 ≤ 2dL2n−
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d log 2 + ‖m‖2
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Construction of Breiman/Median forests

Breiman tree

Select an observations with replacement among the original sample
Dn. Use only these observations to build the tree.

At each cell, select randomly mtry coordinates among {1, . . . , d}.
Split at the location that minimizes the square loss.

Stop when each cell contains less than nodesize observations.

Median tree

Select an observations without replacement among the original sample
Dn. Use only these observations to build the tree.

At each cell, select randomly mtry = 1 coordinate among {1, . . . , d}.
Split at the location of the empirical median of Xi .

Stop when each cell contains exactly nodesize = 1 observation.
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Consistency

Theorem [Scornet, 2016]

Assume that (H1) is satisfied. Then, provided an → ∞ and an/n → 0,
median forests are consistent, i.e.,

lim
n→∞

E [m∞,n(X)−m(X)]2 = 0.

Remarks

Good trade-off between simplicity of centred forests and complexity
of Breiman’s forests.

First consistency results for fully grown trees.

Each tree is not consistent but the forest is, because of subsampling.
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Proof of Theorem (1)

Condition (i) is satisfied since the regression function is uniformly contin-
uous and Var[Y |X = x] ≤ σ2 [see remark after Stone theorem in Györfi
et al., 2002].

Lemme 1

Assume that X has a density over [0, 1]d , with respect to the Lebesgue
measure. Thus, the median tree satisfies, for all γ,

P
[
diam(An(X,Θ)) > γ

]
→

n→∞
0.
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Proof of Theorem (2)

To check (3), observe that in the subsampling step, there are exactly
(
an−1
n−1

)
choices to pick a fixed observation Xi . Since x and Xi belong to the same
cell only if Xi is selected in the subsampling step, we see that

PΘ

[
X

Θ↔ Xi

]
≤
(
an−1
n−1

)(
an
n

) =
an
n
.

So,

E

[
max

1≤i≤n
Wni (X)

]
≤ E

[
max

1≤i≤n
PΘ

[
X

Θ↔ Xi

]]
≤ an

n
,

which tends to zero by assumption.
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Construction of Breiman forests

Breiman tree

Select an observations with replacement among the original sample
Dn. Use only these observations to build the tree.

At each cell, select randomly mtry coordinates among {1, . . . , d}.
Split at the location that minimizes the square loss.

Stop when each cell contains less than nodesize observations.

Modified Breiman tree

Select an observations without replacement among the original sample
Dn. Use only these observations to build the tree.

At each cell, select randomly mtry coordinates among {1, . . . , d}.
Split at the location that minimizes the square loss.

Stop when the number of cells is exactly tn.
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Assumption (H1)

Additive regression model:

Y =
d∑

i=1

mi (X
(i)) + ε,

where

X is uniformly distributed on [0, 1]d ,

ε ∼ N (0, σ2) with ε independent of X,

Each model component mi is continuous.
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Consistency

Theorem [Scornet et al., 2015]

Assume that (H1) is satisfied. Then, provided an → ∞ and
tn(log an)9/an → 0, random forests are consistent, i.e.,

lim
n→∞

E [m∞,n(X)−m(X)]2 = 0.

Remarks

First consistency result for Breiman’s original forest.

Consistency of CART.
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Sketch of proof

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|.

Furthermore, we denote by An(X,Θ) the cell of a tree built with random
parameter Θ that contains the point X.

Proposition

Assume that (H1) holds. Then, for all ρ, ξ > 0, there exists N ∈ N?
such that, for all n > N,

P [∆(m,An(X,Θ)) ≤ ξ] ≥ 1− ρ.

Theoretical splitting criterion for a split (j , z):

L?(j , z) = V[Y |X ∈ A]− P[X(j) < z |X ∈ A] V[Y |X(j) < z ,X ∈ A]

− P[X(j) ≥ z |X ∈ A] V[Y |X(j) ≥ z ,X ∈ A].
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Assume that (H1) is satisfied. Then, for all x ∈ [0, 1]p,

∆(m,A?k(x,Θ))→ 0, almost surely, as k →∞.

Assume that (H1) is satisfied. Fix x ∈ [0, 1]p, k ∈ N?, and let

ξ > 0. Then Ln,k(x, ·) is stochastically equicontinuous on Āξk(x),
that is, for all α, ρ > 0, there exists δ > 0 such that

lim
n→∞

P

 sup
‖dk−d′k‖∞≤δ
dk ,d

′
k∈Ā

ξ
k (x)

|Ln,k(x,dk)− Ln,k(x,d′k)| > α

 ≤ ρ.
Assume that (H1) is satisfied. Fix ξ, ρ > 0 and k ∈ N?. Then there
exists N ∈ N? such that, for all n ≥ N,

P
[
d∞(d̂k,n(X,Θ),A?k(X,Θ)) ≤ ξ

]
≥ 1− ρ.
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We let Fn(Θ) be the set of all functions f : [0, 1]d → R piecewise constant
on each cell of the partition Pn(Θ)

Theorem [Györfi et al., 2002]

Let mn and Fn(Θ) be as above. Assume that

(i) lim
n→∞

βn =∞,

(ii) lim
n→∞

E

[
inf

f∈Fn(Θ)
‖f ‖∞≤βn

EX [f (X)−m(X)]2

]
= 0,

(iii) For all L > 0,

lim
n→∞

E

[
sup

f∈Fn(Θ)
‖f ‖∞≤βn

∣∣∣ 1

an

∑
i∈In,Θ

[
f (Xi )− Yi,L

]2 − E
[
f (X)− YL

]2∣∣∣] = 0.

Then

lim
n→∞

E [Tβnmn(X,Θ)−m(X)]2 = 0.
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Sketch of proof

According to the Proposition

Proposition

Assume that (H1) holds. Then, for all ρ, ξ > 0, there exists N ∈ N?
such that, for all n > N,

P [∆(m,An(X,Θ)) ≤ ξ] ≥ 1− ρ.

the statement (ii) holds.
The second one is true because the complexity of the partition is controlled
by the condition tn(log an)9/an → 0.
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Theorem [Scornet et al., 2015]

Assume that (H1) and (H2.1) are satisfied and let tn = an. Then,
provided an →∞ and an log n/n→ 0, random forests are consistent, i.e.,

lim
n→∞

E [m∞,n(X)−m(X)]2 = 0.

Remarks:

First result for fully developed forest;

Importance of subsampling;

One major drawback: (H2) seems impossible to verify.
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Sparsity and random forests

Assume that

Y =
S∑

i=1

mi (X
(i)) + ε,

for some S < d .

Denote by j1,n(X), . . . , jk,n(X) the first k cut directions used to
construct the cell containing X.

Proposition [Scornet et al., 2015]

Let k ∈ N? and ξ > 0. Under appropriate assumptions, with probability
1− ξ, for all n large enough, we have, for all 1 ≤ q ≤ k,

jq,n(X) ∈ {1, . . . ,S}.
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Conclusion

Centred forests: their consistency results from the consistency of
each tree.

→ No benefits from using a forest instead of a single tree.

Median forests: the aggregation process can turn inconsistent trees
into a consistent forest.

→ Benefits from using a random forest compared to a single tree.

Breiman forests: consistent as well as CART procedure. The
splitting criterion asymptotically selects relevant features.

→ Good performance in high-dimensional settings.
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Definition of a modified Mondrian tree

Consider the following random tree of parameter λ > 0:

For the root node, we let τ = 0 and A = [0, 1]d .

For each cell A =
∏d

j=1[aj , bj ], the selected splitting dimension j ∈
{1, . . . , d} and location s are chosen as follows:

j? = argmin
1≤j≤d

T j

bj − aj
, s? = U([aj

?

, bj
?

]),

where T j for j = 1, . . . , d are independent random variable distributed
as Exp(1). The cell A is then split at time

τA = τ + T j?/(bj
?

− aj
?

),

where τ is the splitting time of the direct ancestor of A.

All splits performed at time larger than λ are removed from the tree.

Finally, the observations are used to compute the average in each cell.
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Theorem: Minimax rates for Lipschitz functions

Assume that the regression function

m :[0, 1]d → R

x 7→ E[Y |X = x]

is Lipschitz on [0, 1]d . Let mn be the Mondrian Forest regressor, with a
lifetime sequence that satisfies λn � n1/(d+2). Then, the following upper
bound holds

E
[
m∞,n(X)−m(X)

]2 ≤ Cn−2/(d+2).

which corresponds to the minimax rate over the set of Lipschitz functions.
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Proposition: Cell diameter

Let x ∈ [0, 1]d , and let Dλ(x) be the diameter of the cell Aλ(x)
containing x in a partition MP(λ, [0, 1]d). If λ→∞, then Dλ(x)→ 0 in
probability. More precisely, for every δ, λ > 0, we have

P(Dλ(x) ≥ δ) ≤ d

(
1 +

λδ√
d

)
exp

(
− λδ√

d

)
and

E
[
Dλ(x)2

]
≤ 4d

λ2
.

Proposition: Number of cells

If Kλ denotes the number of cells in a tree partition MP(λ, [0, 1]d), we
have E[Kλ] = (1 + λ)d .
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Theorem: Minimax rates for C 2 functions

Assume that X is uniformly distributed on [0, 1]d and that the regression
function

m :[0, 1]d → R

x 7→ E[Y |X = x]

is C 2 on [0, 1]d . Let mn be the infinite Mondrian Forest estimate, with a
lifetime sequence that satisfies λn � n1/(d+4). Then, for every ε > 0,

E
[
(m∞,n(X)−m(X))2|X ∈ (ε, 1− ε)d

]
≤ Cn−4/(d+4),

which corresponds to the minimax rate over the set of C 2 functions.
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Theoretical difficulties for studying random forests

The infinite random forests estimate takes the form

m∞,n(x) = EΘ [mn(x,Θ)] .
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Theoretical difficulties for studying random forests

The infinite random forests estimate takes the form

m∞,n(x) = EΘ

[
n∑

i=1

Yi

1Xi∈An(x,Θ)

Nn(x,Θ)

]
.

where Nn(x,Θ) is the number of points in the cell An(x,Θ).
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Theoretical difficulties for studying random forests

The infinite random forests estimate takes the form

m∞,n(x) =
n∑

i=1

YiEΘ

[
1Xi∈An(x,Θ)

Nn(x,Θ)

]
,

where Nn(x,Θ) is the number of points in the cell An(x,Θ).
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Theoretical difficulties for studying random forests

The infinite random forests estimate takes the form

m∞,n(x) =
n∑

i=1

YiEΘ

[
1Xi∈An(x,Θ)

Nn(x,Θ)

]
,

where Nn(x,Θ) is the number of points in the cell An(x,Θ).

Two different difficulties:

The tree dependency on the random variable Θ is unknown.

The number of points in each cell is unknown.
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Kernel based on Random Forests (KeRF)
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Kernel based on Random Forests (KeRF)
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Kernel based on Random Forests (KeRF)
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Infinite KeRF estimate:

m̃∞,n(x) =

∑n
i=1 YiKk(x,Xi )∑n
j=1 Kk(x,Xj)

,

where Kk(x,Xi ) = PΘ [Xi ∈ An(x,Θ)].
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Breiman KeRF vs Breiman random forests

n = 800, d = 50 n = 600, d = 100

Y = X 2
1 + exp(−X 2

2 ) Y = − sin(2X1) + X 2
2 + X3

− exp(−X4) +N (0, 0.5)
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A simple model: the centred forest
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A simple model: the centred forest
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Centred KeRF vs centred random forests

n = 800, d = 50 n = 600, d = 100

Y = X 2
1 + exp(−X 2

2 ) Y = − sin(2X1) + X 2
2 + X3

− exp(−X4) +N (0, 0.5)
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Uniform KeRF vs uniform random forests

n = 800, d = 50 n = 600, d = 100

Y = X 2
1 + exp(−X 2

2 ) Y = − sin(2X1) + X 2
2 + X3

− exp(−X4) +N (0, 0.5)
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Analyzing KeRF estimates

Infinite KeRF estimate: m̃∞,n(x) =
∑n

i=1 YiKk (x,Xi )∑n
j=1 Kk (x,Xj )

Local averaging estimate and thus easier to analyze.

One common assumption on kernel estimate is that Kk(x, z) = K ( x−z
k )

which is not verified here.

Generally, Kk(x,Xi ) cannot be made explicit (due to the complexity
of partitioning). But it can be computed for centred/uniform random
forests.
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Centred forests

For all x, z ∈ [0, 1]d ,

K cc
k (x, z) =

∑
k1,...,kd∑d
j=1 kj=k

k!

k1! . . . kd !

(
1

d

)k d∏
m=1

1d2km xme=d2km zme.

Representations of z 7→ K cc
k ((0.5, 0.5), z) for k = 1, 2, 5
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Uniform forests

For all z ∈ [0, 1]d ,

K uf
k (0, z) =

∑
k1,...,kd∑d
j=1 kj=k

k!

k1! . . . kd !

(
1

d

)k d∏
m=1

zm

∞∑
j=km

(− log zm)j

j!
.

Representations of z 7→ K uf
k

(
0, (z1 − 0.5, z2 − 0.5)

)
for k = 1, 2, 5
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Summary of KeRF

Interpretable form (kernel estimate):

m̃∞,n(x) =

∑n
i=1 YiKk(x,Xi )∑n
j=1 Kk(x,Xj)

.

The kernel function Kk(x,Xi ) = PΘ [Xi ∈ An(x,Θ)] is related to the
shape of partitions

KeRF are close to random forests in terms of prediction accuracy.

But explicit expression for Breiman KeRF is difficult to obtain.
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Merci pour votre attention !
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