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Context: inference of structure hidden in random noise

Community detection

Graph alignment &~

Analysis of random instances
— reveals phase transitions on feasibility and hardness of task
— suggests new algorithms
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Phase diagram for community detection
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@ Tree reconstruction
o Census reconstruction and Kesten-Stigum threshold
o Belief Propagation and Information-Theoretic threshold

o Community detection
o Relation to tree reconstruction

e The hard phase
o Above the Kesten-Stigum threshold
e Links to random matrix theory
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The tree reconstruction problem [Evans et al.’00]

Tree 7, Root node r, Spin: g,

’ /| I 1 PN
’ 1 1 \

6606 6 oo oo

Leaf nodes £, at depth d

Genealogy tree T with root r, “Spins” o; € [q] transmitted
independently:
P(o; = t|opy = s) = Pst for stochastic irreducible matrix P

Root spin o, ~ v where v: stationary distribution of P

— Can one infer o, non-trivially from G4 := (74,0.,) as d — o0?
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Non-trivial reconstruction

Definition
Reconstructibility: limg_o /(0r; Gg) > 0
where [: mutual information

Census at generation d:

Xa 1= {Xs.d}seq) where Xsg = Y L=

i€Ly

Definition

Census reconstructibility: limg_o /(o,; Xq) > 0

In the sequel: T a Galton-Watson branching tree with mean
number of children « (e.g. S(i) ~ Poi(«))
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Kesten-Stigum threshold for census reconstructibility

[Mossel-Peres'03]

Spectrum of P: \;(P), with Ay = 1> [Aa| -+ > |)\4]

Census reconstructibility
holds if a|\a|? > 1,
fails if a|A\p|? < 1.

[Proof elements for Poisson Galton-Watson tree]
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Reconstruction and belief propagation [Pearl'82]

V;d =P(0; = slog, ,, Ta) satisfy “belief propagation” recursion

: : Yip eV L

vi =4 7V jest) Zseta vy Pos 7€ Va\ La,
I[s:o’l-7 i€ Ly.

Both an algorithm and an analysis tool: let

mrqd = Law ((Vsr,d)se[q]) or = t)

Theorem
Ty satisfies density evolution equation wy1 = F(mq):

7T7-7d+1 = LaW <{U5/(Es/€[q] Usl)}se[q]> Whel’e_-
j

X. ) ..
Us = vs Hj.;l Zsje[q] VTJJ-PSSJ’ D ~ Poi(at), 01...,0p i.id. ~ Py,
X1, ..., XP . independent, and XJ ~ To;.ds J € [D]-

4
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Reconstruction and belief propagation

Non-reconstructibility < Vt € [q], limg_oo Tr.q = 0y

Hence: Uniqueness of fixed point of density evolution, m = F(7)
implies non-reconstructibility

Converse [Mézard-Montanari'06]: For v uniform on [q],

non-uniqueness (for unconditional version of fixed point equation)
implies reconstructibility

[Sly'09]: For symmetric Potts model with g, reconstruction differs
from census reconstruction (3 distinct phases).
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Stochastic block model and community detection

Matrix P assumed reversible (vsPst = 14 Pys)

Definition

Stochastic block model G = G(n, P, «): random graph G on [n],
s.t. o[ i.i.d. ~ v, and

Conditionally on o[,,, edges present independently,

P(i ~ jlo)) = =22,
where Rst = aPgt /vt

A= g +W
D \
Noise matrix

\—Y—J

A : block matrix (useful “signal”)
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Block reconstruction

Definition

Block reconstruction feasible if can compute estimates 6}, i € [n]
from observed graph G such that with high probability

At £ £ Pn(s, t)
liminf I,(o;6) > 0, where I,(0;6) := Pn(s, t)In ( ) .
n—00 stze[q] n(s)ve

Alternative notion:

Definition

overlap(61,)): max over permutations 7 of [q] of

% Zie[n] ]Ifr(o,-):&; - supse[q] Vs.

Strong reconstruction holds if with high probability for some &y,
lim inf,_,oc overlap(Gy,) > 0

Strong reconstuction implies reconstruction; the two coincide for
uniformly distributed v.
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Block reconstruction and tree reconstruction

Theorem (Mossel-Neeman-Sly'15)

Block reconstruction in G(n, P, «) implies tree reconstruction in
Poisson Galton-Watson tree with parameters P, «.

Proof ideas:
-local structure of G(n, P, &)
-approximate Markov random field property of o, on G
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Existence of hard phase

Mean progeny matrix: M = aP
Kesten-Stigum threshold: [A\2(M)[> > A1 (M) = a.

Consider symmetric SBM:

Rst _ Cin If s =1, o= c;,,—&-(q—l)cout.
Cout Ifs#t. q

Theorem (Banks et al.'16)

For the symmetric SBM with q > 4, strong reconstruction holds
strictly below the Kesten-Stigum threshold for some &, that can
be computed in exponential time.

Proof idea: good partition of [n]= balanced partition with inter-
and intra-group edge counts close to target values;

show with first moment method sufficient condition for all good
partitions to achieve positive overlap.
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Above Kesten-Stigum threshold: belief propagation

Belief propagation iteration: 1/;241 X Vs [ [ Py Zske[q] wé‘ﬁ"Rssk-

When converged, predicted distribution:
P(O—f = S‘g) ~ w; X Vs H_/NI ZSjE[q] %j_}IRSSj

Conjecture (Decelle et al.’'11)

Above Kesten-Stigum threshold, belief propagation on G(n, P, «)
with random initialization converges, and fixed points ' such that
with high probability liminf, . I,(c; 1) > 0.

- % logQ(s: overlap(s)=x)
where Q(+) = P(c = |G)

Non-reconstructible Hard phase

phase
x _/
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Easy phase
(above KS)




Failure of standard spectral methods

Standard spectral method: Associate u € [n] with x;(u), i € [r]
where eigenvector x; <> \i(A)

250

o

— fails to correlate with o;:
log n
log log n

For o = O(1), largest eigenvalues \;(A) ~ induced by

highest degree nodes, sup;c(, dj

~, _logn
loglog n

Corresponding eigenvector uncorrelated with oy
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Spectral redemption [Krzakala et al'13]

Linearization of BP around trivial fixed point: . "/ = vs(1+ eg—ﬁ)

— ¢ = B ® Pe, where
B: non-backtracking matrix indexed by oriented edges i — j € E

of G,
Bu—) V,X—y — Hv:x]lyiu

o o o o%éo

Asymmetric, such that Bé‘f: number of non-backtracking walks on
G of k + 1 edges starting with e and ending with f
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Non-backtracking spectrum of SBM G(n, P, )

For A\i(M) and associated eigenvector x;, let
vi € RE: yi(u— v) = xi(04)

zi = B'BTy;, ¢ = O(log n)

Let ro = sup{i € [q] : \i(M)? > A (M)}
Theorem (Bordenave, Lelarge, M.'15)

I € [ro] = lim, oo )\,(B) = )\,’(M),
i>ryg=limsup,_, |Ai(B)| < y/A1(M)
For i € [ry] s.t. Ai(M) simple:

B admits eigenvector &; <> \j(B) s.t.

lim o0 ey = 1.

If moreover i > 1, then 6, :=/n)_ ., &(u— v) s.t.
liminf,_o In(o;6) > 0.
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Non-backtracking spectrum of SBM G(n, P, )

Illustration for symmetric SBM, g = 2, above Kesten-Stigum
threshold:

-

R (B) = hp ()| 11 () = 1 (M)
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Baik-Ben Arous-Péché phase transition

Low-rank deformation of random matrices:

W, € R™" Wigner matrix, i.e. symmetric,
{W,,}icjiid. N(0,02/n), {W;}iid. N(0,202/n)
Spectral measure — Wigner's semi-circle law

X vV 40'2 — X2H‘X‘§2UdX

gl

Let P, € R™" symmetric, fixed rank g and spectrum.
Let ro = {sup{i € [g] : \i(P)?> > 02}. Then:

Theorem (Benaych-Georges, Nadakuditi'11)

For i € [ro], liMn_seo Mi(Wp + Pp) = Ai(Pn) +
For i > ry, limsup,_o [Ai(Wh + Pn)| < 20

0.2
)\,'(Pn) :
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Parallel with SBM's non-backtracking spectrum

0?(BBP) Z var(Awlopn) = «;

ve(n]

Py < E(A|opn) = spectrum(P,) — spectrum(M)

Hence:

KS condition \;(M)? > « ++ BBP condition \;(P,)? > o
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lhara-Bass formula

For any graph G with n nodes and m edges, any z € C,

(1—2%)"""det(I — zB) = det(I — zA — z°Diag({d; — 1}c[))

A ¢ {—1,0,1} is an eigenvalue of B if and only if
det()\2/ — M- Diag({d,- = 1}i€[n])) =00,

If a > 1 s.t. node degrees d; concentrate, i.e.
sup;c[n |di — af = o(a), then for A € sp(B), |A| < «, one has
A+ § +o(1) € sp(A).

Suggests that for non-sparse models o > 1, spectral methods
based on A succeed, and non-backtracking spectrum properties
imply BBP transition
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To conclude

o for denser models, “Approximate Message Passing”
[Montanari] an approach of choice

@ Finer phase transitions occur [Ricci-Tersenghi et al'18]

@ Hard phase needs better understanding (basins of attraction,
alternative dynamics)

@ Statistical physics brings rich perspective on computational
complexity
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