Phase transitions in inference: Tree reconstruction and community detection

Laurent Massoulié

Inria, MSR-Inria Joint Centre

January 9, 2019

Laurent Massoulié

Context: inference of structure hidden in random noise

Analysis of random instances

- \rightarrow reveals phase transitions on feasibility and hardness of task
- \rightarrow suggests new algorithms

Phase diagram for community detection

Tree reconstruction

- Census reconstruction and Kesten-Stigum threshold
- Belief Propagation and Information-Theoretic threshold
- Community detection
 - Relation to tree reconstruction
 - The hard phase
 - Above the Kesten-Stigum threshold
 - Links to random matrix theory

The tree reconstruction problem [Evans et al.'00]

Genealogy tree \mathcal{T} with root r, "Spins" $\sigma_i \in [q]$ transmitted independently: $\mathbb{P}(\sigma_i = t | \sigma_{p(i)} = s) = P_{st}$ for stochastic irreducible matrix P

Root spin $\sigma_r \sim \nu$ where ν : stationary distribution of *P*

 \rightarrow Can one infer σ_r non-trivially from $\mathcal{G}_d := (\mathcal{T}_d, \sigma_{\mathcal{L}_d})$ as $d \rightarrow \infty$?

Definition

Reconstructibility: $\lim_{d\to\infty} I(\sigma_r; \mathcal{G}_d) > 0$ where *I*: mutual information

Census at generation *d*:

$$X_d := \{X_{s,d}\}_{s \in [q]}$$
 where $X_{s,d} = \sum_{i \in \mathcal{L}_d} \mathbb{I}_{\sigma_i = s}$

Definition

Census reconstructibility: $\lim_{d\to\infty} I(\sigma_r; X_d) > 0$

In the sequel: \mathcal{T} a Galton-Watson branching tree with mean number of children α (e.g. $\mathcal{S}(i) \sim \text{Poi}(\alpha)$)

伺 ト イヨト イヨト

Kesten-Stigum threshold for census reconstructibility [Mossel-Peres'03]

Spectrum of *P*: $\lambda_i(P)$, with $\lambda_1 = 1 \ge |\lambda_2| \cdots \ge |\lambda_q|$

Theorem

Census reconstructibility holds if $\alpha |\lambda_2|^2 > 1$, fails if $\alpha |\lambda_2|^2 < 1$.

[Proof elements for Poisson Galton-Watson tree]

Reconstruction and belief propagation [Pearl'82]

 $\nu_{s,d}^i = \mathbb{P}(\sigma_i = s | \sigma_{\mathcal{L}_{i,d}}, \mathcal{T}_d)$ satisfy "belief propagation" recursion

$$\nu_{s,d}^{i} := \begin{cases} \frac{1}{Z^{i}} \nu_{s} \prod_{j \in \mathcal{S}(i)} \sum_{s_{j} \in [q]} \frac{\nu_{s_{j}}^{i}}{\nu_{s_{j}}} P_{ss_{j}}, & i \in V_{d} \setminus \mathcal{L}_{d}, \\ \mathbb{I}_{s=\sigma_{i}}, & i \in \mathcal{L}_{d}. \end{cases}$$

Both an algorithm and an analysis tool: let $\pi_{t,d} = \operatorname{Law}\left(\left(\nu_{s,d}^{r}\right)_{s\in[q]} \middle| \sigma_{r} = t\right)$

Theorem

 π_d satisfies density evolution equation $\pi_{d+1} = F(\pi_d)$:

$$\begin{aligned} \pi_{\tau,d+1} &= Law\left(\left\{U_s/(\sum_{s'\in[q]}U_{s'})\right\}_{s\in[q]}\right) \text{ where:} \\ U_s &= \nu_s \prod_{j=1}^D \sum_{s_j\in[q]} \frac{X_{s_j}^{i_j}}{\nu_{s_j}} P_{ss_j}, \ D \sim \text{Poi}(\alpha), \ \sigma_1 \dots, \sigma_D \text{ i.i.d. } \sim P_{\tau}, \\ X^1, \dots, X^D: \text{ independent, and } X^j \sim \pi_{\sigma_j,d}, \ j \in [D]. \end{aligned}$$

Non-reconstructibility $\Leftrightarrow \forall t \in [q], \ \lim_{d \to \infty} \pi_{t,d} = \delta_{\nu}$

Hence: Uniqueness of fixed point of density evolution, $\pi = F(\pi)$ implies non-reconstructibility

Converse [Mézard-Montanari'06]: For ν uniform on [q], non-uniqueness (for unconditional version of fixed point equation) implies reconstructibility

[Sly'09]: For symmetric Potts model with q, reconstruction differs from census reconstruction (3 distinct phases).

Stochastic block model and community detection

Matrix *P* assumed reversible $(\nu_s P_{st} = \nu_t P_{ts})$

Definition

Stochastic block model $\mathcal{G} = \mathcal{G}(n, P, \alpha)$: random graph \mathcal{G} on [n], s.t. $\sigma_{[n]}$ i.i.d. $\sim \nu$, and Conditionally on $\sigma_{[n]}$, edges present independently, $\mathbb{P}(i \sim j | \sigma_{[n]}) = \frac{R_{\sigma_i \sigma_j}}{n}$, where $R_{st} = \alpha P_{st} / \nu_t$.

Block reconstruction

Definition

Block reconstruction feasible if can compute estimates $\hat{\sigma}_i, i \in [n]$ from observed graph \mathcal{G} such that with high probability

$$\liminf_{n\to\infty} I_n(\sigma;\hat{\sigma}) > 0, \text{ where } I_n(\sigma;\hat{\sigma}) := \sum_{s,t\in[q]} p_n(s,t) \ln\left(\frac{p_n(s,t)}{q_n(s)\nu_t}\right).$$

Alternative notion:

Definition

 $\begin{aligned} & \operatorname{overlap}(\hat{\sigma}_{[n]}): \text{ max over permutations } \pi \text{ of } [q] \text{ of } \\ & \frac{1}{n} \sum_{i \in [n]} \mathbb{I}_{\pi(\sigma_i) = \hat{\sigma}_i} - \sup_{s \in [q]} \nu_s. \\ & \text{Strong reconstruction holds if with high probability for some } \hat{\sigma}_{[n]}, \\ & \lim \inf_{n \to \infty} \operatorname{overlap}(\hat{\sigma}_{[n]}) > 0 \end{aligned}$

Strong reconstruction implies reconstruction; the two coincide for uniformly distributed ν .

Theorem (Mossel-Neeman-Sly'15)

Block reconstruction in $\mathcal{G}(n, P, \alpha)$ implies tree reconstruction in Poisson Galton-Watson tree with parameters P, α .

Proof ideas:

-local structure of $\mathcal{G}(n, P, \alpha)$

-approximate Markov random field property of $\sigma_{[n]}$ on \mathcal{G}

Existence of hard phase

Mean progeny matrix: $M = \alpha P$ Kesten-Stigum threshold: $|\lambda_2(M)|^2 > \lambda_1(M) = \alpha$.

Consider symmetric SBM: $R_{st} = \begin{cases} c_{in} & \text{if } s = t, \\ c_{out} & \text{if } s \neq t. \end{cases}, \ \alpha = \frac{c_{in} + (q-1)c_{out}}{q}.$

Theorem (Banks et al.'16)

For the symmetric SBM with $q \ge 4$, strong reconstruction holds strictly below the Kesten-Stigum threshold for some $\hat{\sigma}_{[n]}$ that can be computed in exponential time.

Proof idea: **good partition** of [n]= balanced partition with interand intra-group edge counts close to target values; show with first moment method sufficient condition for all good partitions to achieve positive overlap.

Above Kesten-Stigum threshold: belief propagation

Belief propagation iteration: $\psi_s^{i \to j} \propto \nu_s \prod_{k \sim i, k \neq j} \sum_{s_k \in [q]} \psi_{s_k}^{k \to i} R_{ss_k}$.

When converged, predicted distribution: $\mathbb{P}(\sigma_i = s | \mathcal{G}) \approx \psi_s^i \propto \nu_s \prod_{j \sim i} \sum_{s_i \in [q]} \psi_{s_j}^{j \to i} R_{ss_j}$

Conjecture (Decelle et al.'11)

Above Kesten-Stigum threshold, belief propagation on $\mathcal{G}(n, P, \alpha)$ with random initialization converges, and fixed points ψ^i such that with high probability $\liminf_{n\to\infty} I_n(\sigma; \psi) > 0$.

Standard spectral method: Associate $u \in [n]$ with $x_i(u), i \in [r]$ where eigenvector $x_i \leftrightarrow \lambda_i(A)$

 \rightarrow fails to correlate with σ_i :

For $\alpha = O(1)$, largest eigenvalues $\lambda_i(A) \sim \sqrt{\frac{\log n}{\log \log n}}$ induced by highest degree nodes, $\sup_{j \in [n]} d_j \sim \frac{\log n}{\log \log n}$

Corresponding eigenvector uncorrelated with $\sigma_{[n]}$

Spectral redemption [Krzakala et al'13]

Linearization of BP around trivial fixed point: $\psi_s^{i \to j} = \nu_s (1 + \epsilon_s^{i \to j})$

 $\rightarrow \epsilon = B \otimes P\epsilon$, where B: non-backtracking matrix indexed by oriented edges $i \rightarrow j \in \vec{E}$ of \mathcal{G} ,

 $B_{u\to v,x\to y} = \mathbb{I}_{v=x}\mathbb{I}_{y\neq u}$

Asymmetric, such that B_{ef}^k = number of non-backtracking walks on \mathcal{G} of k + 1 edges starting with e and ending with f

.

For $\lambda_i(M)$ and associated eigenvector x_i , let $y_i \in \mathbb{R}^{\vec{E}} : y_i(u \to v) = x_i(\sigma_u)$ $z_i = B^{\ell}B^{\top \ell}y_i, \ \ell = \Theta(\log n)$ Let $r_0 = \sup\{i \in [q] : \lambda_i(M)^2 > \lambda_1(M)\}.$

Theorem (Bordenave, Lelarge, M.'15)

$$\begin{split} &i \in [r_0] \Rightarrow \lim_{n \to \infty} \lambda_i(B) = \lambda_i(M), \\ &i > r_0 \Rightarrow \lim_{n \to \infty} \sup_{n \to \infty} |\lambda_i(B)| \le \sqrt{\lambda_1(M)} \\ &For \ i \in [r_0] \ s.t. \ \lambda_i(M) \ simple: \\ &B \ admits \ eigenvector \ \xi_i \leftrightarrow \lambda_i(B) \ s.t. \\ &\lim_{n \to \infty} \frac{\langle \xi_i, z_i \rangle}{\|\xi_i\| \cdot \|z_i\|} = 1. \\ &If \ moreover \ i > 1, \ then \ \hat{\sigma}_u := \sqrt{n} \sum_{v \sim u} \xi_i(u \to v) \ s.t. \\ &\lim_{n \to \infty} \ln(\sigma; \hat{\sigma}) > 0. \end{split}$$

Non-backtracking spectrum of SBM $\mathcal{G}(n, P, \alpha)$

Illustration for symmetric SBM, q = 2, above Kesten-Stigum threshold:

Baik-Ben Arous-Péché phase transition

Low-rank deformation of random matrices: $W_n \in \mathbb{R}^{n \times n}$ Wigner matrix, i.e. symmetric, $\{W_{i,j}\}_{i < j}$ i.i.d. $\mathcal{N}(0, \sigma^2/n)$, $\{W_{ii}\}$ i.i.d. $\mathcal{N}(0, 2\sigma^2/n)$ Spectral measure \rightarrow Wigner's semi-circle law $\propto \sqrt{4\sigma^2 - x^2} \mathbb{I}_{|x| \le 2\sigma} dx$

Let $P_n \in \mathbb{R}^{n \times n}$ symmetric, fixed rank q and spectrum. Let $r_0 = \{\sup\{i \in [q] : \lambda_i(P)^2 > \sigma^2\}$. Then:

Theorem (Benaych-Georges, Nadakuditi'11)

For $i \in [r_0]$, $\lim_{n\to\infty} \lambda_i (W_n + P_n) = \lambda_i (P_n) + \frac{\sigma^2}{\lambda_i (P_n)}$. For $i > r_0$, $\limsup_{n\to\infty} |\lambda_i (W_n + P_n)| \le 2\sigma$

| 4 同 ト 4 ヨ ト 4 ヨ ト

Parallel with SBM's non-backtracking spectrum

$$\sigma^2(BBP) \leftrightarrow \sum_{v \in [n]} \operatorname{var}(A_{uv} | \sigma_{[n]}) \to \alpha;$$

 $P_n \leftrightarrow \mathbb{E}(A|\sigma_{[n]}) \Rightarrow \operatorname{spectrum}(P_n) \rightarrow \operatorname{spectrum}(M)$

Hence:

KS condition $\lambda_i(M)^2 > \alpha \leftrightarrow \text{ BBP condition } \lambda_i(P_n)^2 > \sigma^2$

伺 と く き と く き と … き

Ihara-Bass formula

For any graph \mathcal{G} with *n* nodes and *m* edges, any $z \in \mathbb{C}$,

$$(1-z^2)^{n-m}\det(I-zB) = \det(I-zA-z^2\mathsf{Diag}(\{d_i-1\}_{i\in[n]}))$$

Corollary

 $\lambda \notin \{-1, 0, 1\}$ is an eigenvalue of *B* if and only if $det(\lambda^2 I - \lambda A - Diag(\{d_i - 1\}_{i \in [n]})) = 0.$

Corollary

If $\alpha \gg 1$ s.t. node degrees d_i concentrate, i.e. $\sup_{i \in [n]} |d_i - \alpha| = o(\alpha)$, then for $\lambda \in sp(B)$, $|\lambda| \ll \alpha$, one has $\lambda + \frac{\alpha}{\lambda} + o(1) \in sp(A)$.

Suggests that for non-sparse models $\alpha \gg 1$, spectral methods based on *A* succeed, and non-backtracking spectrum properties imply BBP transition

- for denser models, "Approximate Message Passing" [Montanari] an approach of choice
- Finer phase transitions occur [Ricci-Tersenghi et al'18]
- Hard phase needs better understanding (basins of attraction, alternative dynamics)
- Statistical physics brings rich perspective on computational complexity