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• Working group involving industrials, metrologists and statisticians  

• Aims at providing guidelines to metrologists and industrials for an 

efficient implementation of Bayesian calibration in the field of 

measurement 

• Project supported by the French national metrology research program 
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Context and goal of the project 
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• The measurement result is the probability distribution associated with 

the measurand according to the VIM 

• Metrologists often have a strong expertise, knowledge and historical 

data on their measurement models 

 

• Bayesian inference provides posterior distributions for quantities of 

interest 

• Bayesian framework allows to incorporate all the prior knowledge to 

the measurement into the statistical model  

[O’Hagan 2014] 
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The Bayesian choice 
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Example of balance calibration 

Five mass standards are used to calibrate the balance 
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Balance calibration : Data 

Point 

Balance responseYi
obs Standard Xi (mg) 

indication (yi
obs) 

Standard 

uncertainty 
value (xi) 

i=1 1.9000000e-02 38.47 50.019 

i=2 1.8000800e+02 57.71 100.008 

i=3 8.2001900e+02 96.43 1 000.019 

i=4 4.6400480e+03 195.32 5 000.048 

i=5 1.9280056e+04 407.34 20 000.056 

Paris, 13th of may 2019 Journée Big Ideas for Small Data 



Normal linear regression model: 

    𝑌𝑜𝑏𝑠 = 𝑋𝛽 + 𝜀,  𝜀~𝑁(0, 𝚺𝒀) 

     𝑋𝑖 : true value of standard i 

     𝑌𝑖
𝑜𝑏𝑠 : indication given by the device 

 

- Prior distribution 𝑷 𝜷, 𝚺𝒀  determined accordingly to the knowledge available on  

these parameters. Normal Inver Gamma distribution is commonly used 

- Likelihood : 
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Bayesian “classical” regression 
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𝑃(𝛽, 𝚺𝒀 𝒚𝒐𝒃𝒔) ∝ 𝑷(𝜷, 𝚺𝒀) × 𝒍(𝒚𝒐𝒃𝒔 𝜷, 𝚺𝒀) 

[Klauenberg 2014] 

- Posterior distribution 
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2.39 (6.11) VIM 

calibration 

operation that, under specified conditions, in a first 

step, establishes a relation between the quantity 

values with measurement uncertainties provided 

by measurement standards and corresponding 

indications with associated measurement uncertainties 

and, in a second step, uses this information 

to establish a relation for obtaining a measurement 

result from an indication 
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Let’s come back to the definition of calibration 
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Balance calibration : full data 

Point 

Balance response Yi
obs Standard Xi(mg) 

indication (yi
obs) 

Standard 

uncertainty 
value (xi) 

Standard 

uncertainty 

i=1 1.9000000e-02 38.47 50.019 21.1 

i=2 1.8000800e+02 57.71 100.008 27.76 

i=3 8.2001900e+02 96.43 1 000.019 50.59 

i=4 4.6400480e+03 195.32 5 000.048 84.13 

i=5 1.9280056e+04 407.34 20 000.056 140.49 

The uncertainty associated with the value xi is often available and non negligible ! 
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• The alternative is then to use models that consider both uncertainties 

associated with the two variables 

• Errors in variables models: 

Functional relationships between the true quantities:  𝑌 = 𝑋𝛽, 𝛽 unknown 

Error models relating observations and true values: 𝑥𝑖
𝑜𝑏𝑠 = 𝑋𝑖 + 𝜀𝑖   𝑦𝑖

𝑜𝑏𝑠 = 𝑌𝑖 + 𝜀𝑖
′  

with 𝜀𝑖~𝑵(𝟎, 𝚺𝑿) 𝑎𝑛𝑑 𝜀𝑖
′~𝑁(0, 𝚺𝒀) 

[Fuller 1987] 

• Standard ISO/TS 28037:2010 Determination and use of straight-line calibration 

functions is providing algorithms for straight line calibration in presence of 

complex structure of uncertainty, but not in a Bayesian Framework 

• Bayesian analysis of such regression models have been studied only for 

straight line case or for applications in other fields than metrology 

[Reilly 1981] 
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Errors in variables models 
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𝐾 ≥ 1 :  number of standards 

𝑋𝑘 :  true value of standard 𝑘  

𝐽𝑘 ≥ 1 :  number of replicates of indications regarding standard k 

𝐽 =  𝐽𝑘
𝐾
𝑘=1  : total number of indications 

𝑌𝑘,𝑗
𝑜𝑏𝑠 : replicate j of the indication given by the instrument regarding standard k 

𝑓 . , 𝜷 ∶  ℝ → ℝ :  functional relationships where 𝜷 is a vector of real numbers, 
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Notations 

𝟏𝑛 
𝑛,1

=
1
⋮
1

,               𝑿 
𝐼,1

=

𝑋1𝟏𝐼1

⋮
𝑋𝑘𝟏𝐼𝑘

,

       𝑎𝑛𝑑        𝒀 
𝐽,1

= 𝒇 𝑿, 𝜷

=

𝑓 𝑋1, 𝜷 𝟏𝐽1

⋮
𝑓 𝑋𝑘 , 𝜷 𝟏𝐽𝑘

 

𝒀𝑘
𝑜𝑏𝑠

 
𝐽𝑘,1

=

𝑌𝑘,1

⋮
𝑌𝑘,𝐽𝑘

,     𝒀𝑜𝑏𝑠 
𝐽,1

=

𝒀1
𝑜𝑏𝑠

⋮

𝒀𝑘
𝑜𝑏𝑠

⋮

𝒀𝐾
𝑜𝑏𝑠

. 

In case of a straight line calibration function: 𝜷 
2,1

=
𝛽0

𝛽1
,    𝑓 𝑋𝑘 , 𝜷 = 𝛽0 + 𝛽1𝑋𝑘 
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Prior distributions : 

𝑿   ~   𝝅 𝜑𝑿    knowledge about X often provided by certificate through 

𝑿    ~   𝓝(𝑿𝑟𝑒𝑓, 𝚺𝑿) 

𝜷   ~   𝝅(𝜑𝜷)   e.g. for a straight line :  𝜷 =
𝛽0

𝛽1
   ~   𝓝(

𝟎
𝟏

, 𝚺𝜷)) 

 

 

Under the normality assumption : 

𝒀𝑜𝑏𝑠/𝑿 = 𝒙   ~   𝓝(𝒇 𝑿, 𝜷 , 𝚺𝒀𝑜𝑏𝑠

(𝑱,𝑱)

), 

𝚺𝒀𝑜𝑏𝑠    ~   𝝅(𝜑𝚺
𝒀𝑜𝑏𝑠

) ,    𝚺𝒀𝑜𝑏𝑠 may be known through uncertainty budget 
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Bayesian calibration model 
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Let’s assume that 𝚺𝜷 and 𝚺𝒀𝑜𝑏𝑠 are known, which is a very common situation 

Posterior distribution : 

𝑃(𝛽, 𝑋 𝑌𝑜𝑏𝑠) ∝ 𝑙 𝑌𝑜𝑏𝑠 𝛽, 𝑋 𝑃 𝛽 𝑃(𝑋) 

Marginalised posterior distribution : 

𝑃 𝛽 𝑌𝑜𝑏𝑠 =  𝑃 𝛽, 𝑋 𝑌𝑜𝑏𝑠 𝑑(𝑋)
𝑋
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Bayesian inference 

In practice, apart from the Normal assumption for straight line 

calibration models, the posterior distribution of the parameters 𝛽 is 

not explicit and should be simulated through a MCMC algorithm. 
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Representation of the balance calibration model : DAG 

Measurement function 

Decision 

Parameters 

Indications 

References (vectors) 

𝒀𝑜𝑏𝑠 

𝜷 

𝒇 𝑿, 𝜷  𝒀 = 𝒇 𝑿, 𝜷 , Y is a “dummy” variable 

𝜑𝚺
𝒀𝑜𝑏𝑠

 𝚺𝒀𝑜𝑏𝑠 

𝜑𝑿  𝑿 

𝜑𝜷  

𝒀 

Observations or Hyper 

parameters 

Parameters 

Deterministic link 
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Results for the parameters   𝛽 

𝛽1 

Posterior mean std 2.5 perc 97.5 perc 

𝛽0  -20 34 -87 47 

𝛽1 0.96 0.019 0.92 0.99 

𝛽0 

Prior     𝛽0~𝑁(0, 2882)   𝛽1~𝑁(1, 0.2882) 
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95% credible intervals of the posterior distribution of 𝛽0 and 𝛽1 
in function of the 

standard deviation of the prior distribution 
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Sensitivity to the variance of prior distribution of beta 

𝛽0  𝛽1 

Blue line is the current choice of variance parameter 
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Prior and posterior probability distributions of X 
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Model checking by cross validation 

Leave one out for each 

Xk and estimate of its 

predictive posterior 

distribution comparing 

with its prior one 
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Posterior distribution of 𝛽 obtained by Bayesian classical regression (green curve) 

and new Bayesian calibration model (dashed blue curve) under same prior 
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Comparison of posterior distribution 

𝛽0 𝛽1 

Posterior mean std 2.5 p 97.5 p 

𝛽0  -20 34 -87 47 

𝛽0  = 0𝑋  -21 31 -81 39 

Posterior mean std 2.5 p 97.5 p 

𝛽1 0,96 0,019 0,92 0,99 

𝛽1  = 0𝑋  0.95 0.018 0.92 0.99 
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  DAG of the prediction model: 
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Second step of the calibration : prediction  

𝜑𝜷
∗  

𝒀0
𝑜𝑏𝑠 𝛴𝒀0

𝑜𝑏𝑠 

𝜷 

𝒇 𝑿𝑛𝑒𝑤 , 𝜷  𝑿𝑛𝑒𝑤 𝜑𝑿𝑛𝑒𝑤 𝜑𝛴
𝒀0
𝑜𝑏𝑠

 

Given 𝑌0
𝑜𝑏𝑠a new indication written on the balance, let’s predict 𝑋𝑛𝑒𝑤 the 

value of the quantity that is measured : 

𝑃 𝛽, 𝑋, 𝑋𝑛𝑒𝑤 𝑌0
𝑜𝑏𝑠, 𝑌𝑜𝑏𝑠 ∝ 𝑙 𝑌0

𝑜𝑏𝑠, 𝑌𝑜𝑏𝑠 𝛽, 𝑋, 𝑋𝑛𝑒𝑤 𝑃 𝛽, 𝑋 𝑃 𝑋𝑛𝑒𝑤  

         ∝ 𝑙 𝑌0
𝑜𝑏𝑠 𝛽, 𝑋𝑛𝑒𝑤 𝑃 𝛽 𝑌𝑜𝑏𝑠 𝑃 𝑋𝑛𝑒𝑤  

Marginal posterior distribution for 𝑋𝑛𝑒𝑤  is then obtained by : 

𝑃 𝑋𝑛𝑒𝑤 𝑌0
𝑜𝑏𝑠, 𝑌𝑜𝑏𝑠 =  𝑙 𝑌0

𝑜𝑏𝑠 𝛽, 𝑋𝑛𝑒𝑤 𝑃 𝛽 𝑌𝑜𝑏𝑠 𝑃 𝑋𝑛𝑒𝑤 𝑑𝛽 

Parameters 𝜑𝜷
∗   being estimated 

in the first calibration step 

𝛴𝒀0
𝑜𝑏𝑠 is assumed to be known 
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In practice due to industrial and philosophical constraints 𝑋𝑛𝑒𝑤’s 

conditional posterior given X and 𝛽 is considered : 

𝐸  𝜋 𝑋𝑛𝑒𝑤 𝑌0
𝑜𝑏𝑠, 𝑋, 𝛽  𝑌𝑜𝑏𝑠 =  𝜋 𝑋𝑛𝑒𝑤 𝑌0

𝑜𝑏𝑠, 𝑋, 𝛽 𝜋 𝛽, 𝑋 𝑌0
𝑜𝑏𝑠, 𝑌𝑜𝑏𝑠 𝑑𝛽𝑑𝑋 



Numerical example : 𝑌0
𝑜𝑏𝑠 = 4984, 𝜎𝒀0

𝑜𝑏𝑠 = 159 , and Prior 𝑋𝑛𝑒𝑤~𝑁(0, 𝑙𝑎𝑟𝑔𝑒) 
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Comparison of  predictions 

Posterior distribution of 𝑋𝑛𝑒𝑤  obtained by Bayesian classical regression 

(green curve) and new Bayesian calibration model (dashed blue curve) under 

same prior 
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Extension of the Bayesian calibration model 

Measurement function 

Decision 

Parameters 

Indications 

References (vectors) 

Standards 

𝒀𝑜𝑏𝑠 

𝜷 

𝒇 𝑿, 𝜷  𝒀 = 𝒇 𝑿,𝜷  

𝑿𝑜𝑏𝑠 𝜑𝚺
𝑿𝑜𝑏𝑠

 𝜑𝚺
𝒀𝑜𝑏𝑠

 𝚺𝒀𝑜𝑏𝑠 𝚺𝑿𝑜𝑏𝑠 

𝜑𝑿  𝑿 

𝜑𝜷  

𝒀 

In other situations, the standard is also observed during the first 

calibration step. This leads to a second observation equation : 

𝑿𝑜𝑏𝑠/𝑿 = 𝒙   ~   𝓝(𝑿, 𝚺𝑿𝑜𝑏𝑠

(𝑰,𝑰)

), with  𝚺𝑿𝑜𝑏𝑠    ~   𝝅(𝜑𝚺
𝑿𝑜𝑏𝑠

) 
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• Bayesian calibration approach has the advantage to take into account 

prior knowledge, in particular past calibration data of the same device 

• Model that allows to take into account both uncertainties associated 

with the standard and the indication for more reliable estimation of 

the calibration parameters 

• Flexible model suited for different calibration situations 

• The straight line case can be generalized to deal with polynomial 

calibration functions 

• Analytic solution for the posterior estimates is available in case of 

straight line calibration (via Laplace approximation) otherwise 

implementation of MCMC algorithm on winbugs/R/Python 
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Conclusion : advantages of this calibration model 
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Thank you for your attention 
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