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What do statisticians do when sufficient data is
available?

…the great potential of using data to help us understand the world and make better judgements.
This is what statistical science is all about.

(David Spiegelhalter, The Art of Statistics. Learning from Data)

Big worlds & Small worlds…

(Ben Lambert, A Student’s Guide to Bayesian Statistics)

A science of interpretation?

Statistics/probability

Cooking/chemistry

Psychology

What statisticians do when few data is
available?

They do not know much…

Some hide their helplessness under the carpet…

The language of probability is taylored to be honest : Probabilistic assessments of credibility!
Especially convenient for Bayesians.

They search for additional sources of information…

Assuming hypotheses as a model based way to (artificially?) reduce uncertainty.

Off the shelf auxiliary theories:
symmetry & principle of (un)sufficient reason,
entropy,
phenomenological mockery
recourse to asymptotic behavior

Code 



Trying to see farther by standing on former
giants’shoulders:
Much of the following material has been stolen from:

Tribus: Rational Descriptions, Decisions & Designs, pages 396–404
(https://www.elsevier.com/books/rational-descriptions-decisions-and-designs/tribus/978-0-08-
006393-5)

 

Maranzano & Krzyzstofowicz: Bayesian Reanalysis of the Challenger O-Ring Data, Risk Analysis,
Vol. 28, No. 4, 2008

Part 1: 
Decision under uncertainty with very few
information
The widget factory of Jaynes
You are the newly appointed director of color styling in a widget factory.

Suppose the factory produces 200 widgets each day, which must all be painted either red, blue or green.

The company has issued an advertisement which reads, “Delivery in 24 hours or double your money
back”.

https://www.elsevier.com/books/rational-descriptions-decisions-and-designs/tribus/978-0-08-006393-5


First state of knowledge
Since you are new on the job, you will try to find out as much as you can before making a decision.

Suppose you look into the storeroom and find the following information:

First state of knowledge (cont’d)



Second state of knowledge
Of course, this is not very good information on which to base a decision which might cost you a
considerable amount of money. Suppose, therefore, that you gathered more information and found that the
average daily orders were as indicated in the following table:

Second state of knowledge (cont’d)



Third state of knowledge
Even with this information, you would not like to make the decision, you would certainly want more
information. Suppose you were to learn something about the size of the individual orders, as indicated in
the table below:

Third state of knowledge (cont’d)



Fourth state of knowledge
Using this third stage of knowledge, generally 80 per cent of the audience will agree with the choice given
by the vote.

Yet many people will not be able to give a cogent argument supporting their view.

At this point that most engineers will concede the usefulness of a mathematical analysis.

However, just to make the point , suppose you receive a long distance telephone call which advises you
that an order has just been received for 40 green widgets. In the fourth state of knowledge, the information
appears as follows:

Fourth state of knowledge (cont’d)



The need for modeling (state of knowledge 1)

rampe=function(n,s){ # n nombre de commandes, s stock
  res= (n-s)*(n>=s)  # perte si les commandes dépassent le stock
}

First state of knowledge : symmetry!

then  is minimal for 
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stock=c(100,150,50)
U=0*stock
fabrication=0*stock
for (couleur in 1:3) {fab=fabrication
                      fab[couleur]=200
                      U[couleur]=sum(rampe(n=200,stock+fab))
}
head(U)

[1] 200 250 150

MaxEnt formalism : Implementation procedure
1. Define the permitted events

2. Collect available information according to these contingencies

3. Find the probability function maximizing entropy  while meeting the
constraints imposed by the information available. Generally they are of the form: 

 for some functions 

4. Then update this distribution using Bayes’ formula each time new information becomes available.

MaxEnt formalism : What to do?
Solve:

Differentiate:

and get  with:
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MaxEnt formalism: Application
Exponential distribution (  with , then:  by computing:

and get :

Second state of knowledge (MaxEnt)
From MAXENT principle we get:

so that:
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geo=function(p,n){(1-p)*p^n}
#lambda=p/1-p, lambda est la moyenne
#p=lambda/(1+lambda) , p est la proba de survie
geom=function(lambda,n){geo(lambda/(1+lambda),n)}
# loi exponentielle discrète
rgeom=function(size,lambda,nmax=10000){
  n=0:nmax
  sample(x=n,size=size,replace = T,prob = geom(lambda,n))}
hist(rgeom(1000,50),freq=F,nc=25,xlab='nb commandes', main="géometrique(50)") 
lines(1:400,geom(50,1:400),typ='l', col='red')

Expected utilities for the second state of knowledge
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####Info 2 
lambda=c(50,100,10)
stock=c(100,150,50)
U=c(0,0,0)
nrepet=10000
s=matrix(stock,nr=nrepet,nc=3,byrow = T)
n=matrix(0,ncol=3,nr=nrepet)
#Aleas
for (i in 1:3){
n[,i]=rgeom(nrepet,lambda = lambda[i])
}
#Decisions
for (i in 1:3){
ntest=n
ntest[,i]=ntest[,i]-200
U[i]=sum(apply(rampe(ntest,s),2,mean))
}
print(U)

[1] 22.6284  9.7273 29.2749

Third state of knowledge : Law of leaks
My favorite model for zero inflated data = A compound Poisson



Third state of knowledge (cont’d)

####Info 3 
lambdatot=c(50,100,10)
lambdataille=c(75,10,20)
nbComMean=lambdataille/lambdatot
stock=c(100,150,50)
U=c(0,0,0)
nrepet=1000
s=matrix(stock,nr=nrepet,nc=3,byrow = T)
n=matrix(0,ncol=3,nr=nrepet)
#Aleas
for (i in 1:3){
  n[,i]=rpois(n = nrepet,lambda = nbComMean[i])
  for (k in 1:nrepet){
    n[k,i]=sum(rgeom(n[k,i],lambda = lambdatot[i]))
  }
}
hist(n[,3],freq=F,nc=25,xlab='nb quotidien', main="fuite(2,50)") 
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#Decisions
for (i in 1:3){
ntest=n
ntest[,i]=ntest[,i]-200
U[i]=sum(apply(rampe(ntest,s),2,mean))
}
print(U)

[1]  5.204 23.266 23.990

Fourth state of knowledge
Play it again…
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#Info 4
stock[3]=stock[3]-40
s=matrix(stock,nr=nrepet,nc=3,byrow = T)
for (i in 1:3){
ntest=n
ntest[,i]=ntest[,i]-200
U[i]=sum(apply(rampe(ntest,s),2,mean))
}
print(U)

[1] 16.196 34.258 23.990

To sum it up: Cost function

To sum it up: Conditional reasoning with
probability models



Take-home message 1
Dealing with a small sample does not mean solving a simple problem: even in that case, statistical
science is intended to help us make better judgements and recommandations. Models are
necessary tools to help decision making under uncertainty.

What are we relying on?

* specific features of knowledge (symmetry,etc.),

* principles of entropy,

* phenomenologically based interpretation,

* past experience & conveniency.

Part 2: 
An unreliable statistical analysis and
disaster.
Flahback on Challenger story



On the morning of January 28, 1986 the estimated temperature of the primary O-rings on the Challenger
solid rocket motors was 31◦F (−0.6◦C). This was 22 ◦F (12.2 ◦C) lower than the minimum temperature
recorded in all previous shuttle launches [◦C = (◦F − 32)5/9]. The Presidential Commission on the Space
Shuttle Challenger Accident (1986) found that “a careful analysis of the flight history would have revealed
the correlation of O-ring damage in low temperature.”

Damaged O-rings during previous launchings



 

Data analysis of damaged O-rings

 

Denote  the variable temperature,  if the O-ring is damaged else 

Statistical business as usual : logistic regression!

X Y = 1 Y = 0

Y ∼ Bernoulli(p)



Reanalysis: in search for the joint 

 

try likelihoods:  (Weibull);  (Log-Weibull)

pick a prior: ; 

get the posterior: 

Take-home message 2
Cast more than one quick eye on the figures: The engineers at Morton Thiokol transmitted a
facsimile to NASA stating that “temperature data [are] not conclusive on predicting primary O-ring
blowby.”

Be mindful of your systematic reflexes: Forcing  to be a logistic model arbitrarily removes
uncertainty: the symmetry of the logistic function is such that high temperatures specify the
behaviour for the (missing) low temperatures. Mind your statistical course!

Proposing various constructions , evaluating  and then calculating[Y|X] makes it easier to
express uncertainty. Perform sensitivity analysis.

Conclusions

Y ∼ Bernoulli(p)

p =
exp(aX + b)

1 + exp(aX + b)

[X, Y]

[X|y = 1] [X|y = 0]

[Y = 1] = 9
9+129 [Y = 0] = 129

9+129

[Y = 1|X] = [X|Y=1][Y=1]
[X|Y=1][Y=1]+[X|Y=0][Y=0]

[Y|x]

[X|y] [Y]



The contingency of small numbers
When facing a small sample, there is actually no valid narrative that can accurately explain the phenomenon
one could get from the figures derived from the data set.

It is merely a matter of statistics when studying a small sample set: by nature, they are highly variable. But
rather than attribute its perceived salient traits to the random nature of small sample sets, we cannot avoid
setting up to the task of generating a story that can explain what we see.

Models convey information
modeling = the art of cutting,

model as a prior expertise brings information into the analysis.

Being honest as a statistician ?
Make explicit the model assumptions : (hypo–thesis)

Point out the sources of uncertainty

Try to quantify your credibility in each proposal

Beware of your model : make sensitivity analysis on your priors, including model structure

Bayesian approach is not only structurally optimal, but also practically advantageous.


