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General Framework
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General Framework

exp(—(1 +YX)717) ify$0
Hy(x) =

exp(—exp(—x)) ify=0

¥: extreme value index

1
v>0 Fréchet, distribution of Pareto-type: 1 — F(x) = x 7{g(x)
Y<0 Weibull, X has a finite endpoint
Y=0 Gumbel, exponential decreasing tail



"Peaks-Over-Thresholds” (POT) approach

Up < Tg :=sup{x: F(x) <1} non random threshold

Yi,..., Yn, the excesses above up
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"Peaks-Over-Thresholds” (POT) approach

F(up+ x)— F(up)
1—F(un)

Fu,(x) = IP’(X < u,7+x‘X > u,,) =
e Pickands (1975)

sup | Fu,(X) = Gyg(uy (X)| =0, as n— o0
xe[0,TF—un[
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where GY,G(X):{ 1—(1+EX) ¥ If’Y:+:O



Introduction

Modelling dependence among extremes is of primary importance in practical
applications where extreme phenomena occurr

Sklar (1959):

P (Ym <y, Y® < Y2> =C(Fi(y1),F2(y2))

e C characterizes the dependence between Y(!) and Y

e Cis called an extreme value copula if and only

Cly1,y2) = exp <'°g<y‘y2)A (m»

where A: [0,1] — [1/2,1] is the Pickands dependence function



Introduction: Pickands dependence function

Ais convex and satisfies max{t,1 —t} < A(t) <1

C(y1,y2) = exp <Iog(y1y2)A (&fﬁ,ﬁ)))



Motivation 1: covariate

Aim: Extend to the case where the pair (Y("), Y(?) is recorded along with a
random covariate X € RP

e the copula function depend on the covariate

o the marginal distribution functions depend on the covariate

P(Fi (YD) <1 R(YO[) < X = x) = Gy, 32),

where C, admits a representation of the form

R e =),

Portier & Segers (2018): Cy = C



Motivation 2: contamination

Basu et al. (1998): density power divergence between two densities g and h

N R

9y _
R|0€WQ(Y)O'}’; o=0

A(X(g7 h) =

h=hy Zi,..,Zyiidg

The MDPDE 8 minimizes the empirical version

1\ 1 <&
AT dy — [1+— ) = > h*(Z o>0,
JR (y)dy <+a)n; (Z)

A0€<e> = 18
7E2|ogh(Z/) =0
i=1



Simple framework: Case of know margins

Assume:

e Fi(.|x) and F(.|x) are standard exponential distribution functions

e Ao(.|x) = true conditional Pickands dependence function associated to this
pair (Y1) y(2))

Gy1,yelx) = P(Ym >0, y® >Y2‘X=x)

Yo
= exp|—(y1+y)A ‘x))
P< (Y1 }/2) °<y1+y2




Simple framework: Case of know margins

Consider

y() y®)
Z; := min (,)
1—t t

it is clear that

P(Z > z|X = x) = e ¥ yz > 0and x e RP

= L(Z|X = x) is Exp(Ao(t|x))



Simple framework: Case of know margins

(Z:i,Xi),i =1,...,n, be independent copies of the random pair (Z;, X)

Robust estimator for Aq(t|x) by fitting this exponential distribution function
locally to Z;;, i = 1,..., n, by means of the MDPD criterion, adjusted to locally
weighted estimation, i.e. we minimize for o0 > 0

n 1+a a

~ O A]* o1 1\ a0z,
Doxt(Atlx) = ————— > K Xi 1+
Xt (AUEX ,; h(x ){ ( )e }

e Ki(.) := K(./h)/hP where K is a joint density on R

e h = hy is a positive non-random sequence satisfying h, — 0as n— oo



Simple framework: Our aim

The MDPDE for A(t|x) satisfies the estimating equation

~(
Beri(Altlx)) = 0
Aim: To show the weak convergence of the stochastic process

[Vt (anltln) ~ Ao(tin)) 1€ 0,11}

in the space of all continuous functions on [0, 1], denoted as C([0,1]), when
n— .



Simple framework: Case of know margins

Our starting point: the estimating equation
1
Ao (Alt]) =0
Taylor series expansion around A (t|x)
0 = AL (Ao(th)) + (Aun(thn) = Ao(tlx)) BE) (Ao(t1x))

47 (Aan(tl) — Ao(t10)” BF), (A(t1))

— \/W(Z\a,,,(t\x) —Ao(t\x))

fF AL ((Ao(t]x)
AZ (Ao(tx)) + FAZ) (A1) (Aan(tlx) — Aotlx) )



Simple framework: Preliminary step

Key statistic:

To(K,a,t, A, B,v|x)

:\m

n
Z l?iefkazty,-

forae[1/2,1],te[0,1],A,p=>0and yeR



Simple framework: Assumptions

Assumption (D). There exist My > 0 andn > 0 such that
|#(x) = (2)| < My|x — 2|
for all (x,z) € Sx x Sx.
Assumption (4y). There exist Ma, > 0 andna, > 0 such that
|Ao(t]x) — Ao (t]2)] < Mg || x — 2|0
for all (x,z) € By, (r) x By, (r),r >0 and te [0,1].

Assumption (7). K is a bounded density function on RP with support Sk
included in the unit ball of RP with respect to the norm |.|.



Simple framework: Preliminary step

Lemma 1. Assume that for all t € [0,1], x — Ao(t|x) and the density function
f are both continuous at xo € Int(Sx) non-empty. Under Assumption (%), if
h— 0 and nh? — oo, then for a€ [1/2,1], A, = 0, Y€ R and xo such that
f(x0) > 0, we have

Ao (t]x0)
(at Ao(t]ro)) T )

To(K, a,t, 0, B,Y]x0)——a"T (B +1)

as n— oo, where I' is the gamma function defined as

w
I'(r)::J t~'e~ldt, Vr>0
0



Simple framework: Preliminary step

Theorem. Letye R and (A,B) € (0,00) x Ry or (A,) = (0,0).
Under the assumptions of Lemma 1 and if (D) and (Ao) hold with
/NP (MiNA) s 0 then the process

{m (n(K,Aome),r,x,mm T+ 1)%:‘@@) te [o,ﬂ}

weakly converges in C([0,1]) towards a tight centered Gaussian process
{B;,te[0,1]}



Simple framework: Preliminary step

Limiting distribution of

Th = (Ta(K, Ao(t1|X0), t1, 2,81, ¥1[%0) -, Tn(K, Ao (tmX0), tmy A, Brmy Yml%0)) T

Theorem 1. Under the assumptions of Lemma 1, we have

W(Tn*E[Tn]) ~ %(O’Z)



Simple framework: Asymptotic properties of /?\a,n(t\xo)

Existence and uniform consistency of ﬁa,n(t|xo)

Theorem 2. Let o > 0. Under the assumptions of Theorem 1, with probability
tending to 1, there exists a sequence (/’Z\a,n(ﬂxo)) N of solutions for the

ne
estimating equation such that

sup | A n(tx0) — Ao(tlx0)| = om(1)
te[0,1]



Simple framework: Asymptotic properties of /?\a,n(t\xo)

Weak convergence of the stochastic process

Theorem 3. Let <2\a7n(t|xo)) N be the consistent sequence defined in
ne.
Theorem 2. Under the assumptions of Theorem 1, the process

{W(i\a,n(ﬂxo) —Ao(tlxo)) te [071]}

weakly converges in C([0,1]) towards a tight centered Gaussian process
{Nh te [Oa 1]}



General framework: Case of unknown margins

Fi(.|x) and F>(.|x) are unknown conditional dfs

e Consider the triplets

(—tog (Far (¥("1x) ) .~ 1og (Faa(¥ X)) . X)

e Compute

. —tog (Fa (Y1) —log (Faa(Y®1x)
Znt,i = min - ¢

)

o Define the key statistic

T (K a,t, A B ’Y|X0 ZKh Xo — _xaén,t,i

ntl



General framework: Case of unknown margins

The MDPDE satisfies the estimating equation

X (1
AY) (Altlx)) =0,

n
X a 1 1\ ez ..
Agxi(@) = FZK”(XO = Xi) {w - <1 + 0c> e aaz"""}-

Final goal: weak convergence of the stochastic process

{ VP (Ran(tixe) ~ Ao(txo) ) e 0,11}



General framework: Case of unknown margins

Decompose
Ve (T, —E[Ta]) (K. a,t1.B.v1%)

into two terms

{ nhP(Tn—]E[T,,])(K,a,t,k,B,y|xo)}
_l’_

{Vibe ([To— Tl =B[To— Tal) (K. 2.t 1. 8.7%0) }



General framework: Empirical kernel estimator of F;(.|x)

Z?=1 KC(X_)(I)H{Y’(HS},}
iy Ke(x = X)) ’

Fnj(y[x) := j=12

Assumption (). There exist Mg, > 0 and Mg > 0 such that
IFi(y1%) = Fi(yl2)| < Mg [x — 2",
forally e R and all (x,z) € Sx x Sx andj =1,2.

Assumption (%z). K satisfies Assumption (%X;) and belongs to the linear
span (the set of finite linear combinations) of functions k = 0 satisfying the
following property: the subgraph of k, {(s,u) : k(s) = u}, can be represented
as a finite number of Boolean operations among sets of the form

{(s,u) : q(s,u) = @(u)}, where q is a polynomial on R x R and ¢ is an
arbitrary real function.



General framework: Preliminary results

Lemma 2. Assume that there exists b > 0 such that f(x) = b,¥x € Sx — RP,
f is bounded, and (%) and (F) hold. Consider a sequence c tending to 0 as
n — oo such that for some q > 1

|logcl|?
ncP —0

Also assume that there exists an € > 0 such that for n sufficiently large

inf AM({ue By(1): x—cue Sx}) > ¢, (1)

XESx

where A denotes the Lebesgue measure. Then for any
0 <M < min(ng,NF,), we have

|log c[? .
sup  |Fnj(y|x) —Fj(y|x)| = op | max — " , forj=1,2.
(. X)eRx Sx ncP



General framework: Preliminary results

Theorem 4. Assume that there exists b > 0 such that

f(x) = b,Vx € Sx c RP f is bounded, and (%), (D) and (F) hold together
with condition (1). Consider two sequences h and c tending to 0, such that for
nhP — oo and for some q > 1 and any 0 <M < min(Mf,,MNF,)

logcl|?
\VnhP r, := v/nhP max (4/ | (;gcp| ,c“) —0,

asn— oo. Then, forallye R and (A,B) € (0,00) x Ry or (A,B) = (0,0), we
have

sup \V nhP

te[0,1],ae[1/2,1]

?n—Tn—E[?n—T,,]

(Kv a, tv}”7B7’Y|X0) = OPU)



Simple framework: Asymptotic properties of Aq,n(t|xo)

Theorem 5. Let o > 0. Under the assumptions of Theorem 4 and (Ay), with

probability tending to 1, there exists a sequence (7\0(7,,(t|x0)) N of solutions
ne
for the estimating equation such that

sup |n(]0) — Ao(t]x0) | = 0x(1).
te[0,1]

Moreover, for this consistent sequence, if / nhP AN MAg) 0, the process
{\/nhp (Z\m,,mxo) —Ao(t|xo)) te [0,1]},

weakly converges in C([0,1]) towards the tight centered Gaussian process
{N¢,te [0,1]} defined in Theorem 3.



Small simulation study

The conditional distribution function of (Y("), Y(?)) given X = x is a mixture
model of the form

Fe(y1,y2|x) = (1 —€)Fi(y1,y2|x) +eFc(y1, y2|x),

where € € [0, 1] represents the fraction of contamination in the dataset.

_ _ X
Fo(ya,yalx) == GXP{— <y1 iy ”X) } for y1,y2 > 0
and
1 1/x\*
Aoltlx) = (£ + (1= 0)"*),
where the covariate X is a uniformly distributed random variable on [0, 1]

e complete dependence as x | 0

e independence as x = 1



First type of contamination

Given X = x, the distribution function F; is

1 L o
Fe(y1,yelx) = E{e noteh }“{y1>0-,y2>0}

Y2
Y2

Figure 1: On the left the original data and on the right the data after transformation
into (approximate) unit exponentials. Here € is set to the value 0.1.



Second type of contamination

The distribution function F; has completely dependent unit exponential
margins

it

Y2

Figure 2: On the left the original data and on the right the data after transformation
into (approximate) unit exponentials. Here € is set to the value 0.1.



Small simulation study: Our estimator Z\aﬁn

Cross validation for the sequence ¢

A random selection of size n, := n A 1000 from the original observations is
obtained: {(Y'", Y& X )izt o,

lr’lr7lf

ne ne 2

G —argmanZ[ y(1)<y/) Fnr*h]( ;EJE‘X/) =12,
i=1k=1

22;1 ki K?:j (X - Xk,r)]]{y(j) <y}

Zk 1k7&1KC(X Xi.r)

where IN:,,,’,i,j(y\x) =



Small simulation study: Our estimator Z\aﬁn

Cross validation for the sequence h

1 _OA N
h:=argmin ZZA(xn( i) t]|)(l r) < <1 +oc>e (XA“>”1(—’)(tllxlwf)zn‘t/,l,r)

n
hest NeM =1 j=1

where Z\a (i) (t|x) denotes the estimator of Ay(t|x) obtained on all but
observation i, Z,, Ajisr is as Z,,,/ i but now calculated for (Y, ( ) Y(Z) X,-,,), and

iir o tir o
Z/ 1 (X X)
Zi:1 KE(X_X/‘)ZM

Ao n(t]x) =



Small simulation study

e C={0.06,0.12,0.18,0.24,0.3} and # = {0.02,0.03,0.04,0.05,0.06}

15
ﬁ“ —x®)? 11 11(x)

e procedure repeated N = 200 times, and sample sizes n = 1000 and 5000

e bi-quadratic function K(x) :=

¢ Indicator of efficiency

1

M
2
NM - Z [ o,€,n z‘m|X AO(tm|X)]

m=1

™=

MISE(g,al|x) :=

Il
o

where Z\g‘y)&y,,(t,,,|x) is our estimator obtained with the i—th sample when the
contamination is €.



First contamination: MISE (g, at|x),n = 5000
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Figure 3: o0 = 0 (black), oo = 0.1 (blue), oo = 0.5 (green) and o. = 1 (red). Here
x = 0.1 (left) and 0.5 (right).



Second contamination: MISE(g, a|x), n = 5000
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Figure 4: o0 = 0 (black), oo = 0.1 (blue), oo = 0.5 (green) and o = 1 (red). Here
x = 0.5 (left) and 0.9 (right).



Coverage probabilities of 90% confidence intervals

=03 =05 t=07
x=0.1 0 0.1 05 1 0 04 05 1 0 04 05 1
095 | 095 | 096 | 098 | 095 | 096 | 096 | 097 | 095 | 096 | 096 | 098
n = 5000 014 | 028 | 084 | 090 | 006 | 012 | 069 | 082 | 013 | 029 | 084 | 090
002 | 005 | 055 | 083 | 000 | 001 | 016 | 051 | 001 | 003 | 056 | 0.80
=03 t=05 =07
x=05 o 0 01 05 1 0 04 05 1 0 01 05 1
€=00 | 097 | 099 | 098 | 097 | 097 | 097 | 097 | 095 | 096 | 097 | 097 | 098
n=5000 | e=01 | 030 | 053 | 091 | 095 | 039 | 056 | 090 | 091 | 031 | 054 | 093 | 094
e=02 | 004 | 010 | 070 | 087 | 006 | 011 | 066 | 080 | 005 | 008 | 069 | 086
=03 =05 t=07
x=05 o 0 01 05 1 0 04 05 1 0 0.1 05 1
€=00 | 09 | 096 | 097 | 096 | 094 | 093 | 096 | 096 | 09 | 097 | 09 | 09
n=5000 | e=01 | 093 | 098 | 096 | 096 | 048 | 069 | 094 | 096 | 095 | 099 | 099 | 098
e=02 | 092 | 098 | 09 | 095 | 020 | 033 | 088 | 096 | 087 | 097 | 096 | 094
=03 =05 t=07
x =09 0 0.1 05 1 0 04 05 1 0 0.1 05 1
100 | 100 | 100 | 100 | 099 | 099 | 100 | 100 | 098 | 098 | 099 | 099
n = 5000 061 | 077 | 097 | 098 | 015 | 039 | 095 | 097 | 060 | 082 | 098 | 0.99
026 | 044 | 092 | 095 | 001 | 009 | 074 | 091 | 024 | 042 | 091 | 096




Second contamination: x = 0.5,

002 01 018 028 03 045 058 058 07 088 09 002 01 018 025 03 048 058 068 078 088 09 002 01 01 020 0% 04 059 068 078 08 098

o =0.1 o=0.5 o=1



Second contamination: x = 0.5, € = 10%




Second contamination: x = 0.5, € = 20%




Application to air pollution

The dataset contains daily measurements on, among others, maximum
temperature, and ground level ozone, carbon monoxide and particulate
matter concentrations, for the time period 1999 to 2013

Focus on ground level ozone and particulate matter concentrations
— calculate component-wise monthly maximum of daily maximum
concentrations

— estimate the Pickands dependence function conditional on the
covariates time and location (latitude, longitude)



Application to air pollution: Houston, April 2002

A

002 008 014 02 026 032 038 044 05 056 062 068 074 08 086 092 098

t

Figure 5: Conditional Pickands dependence function in April 2002, o = 0 (black),
o = 0.1 (blue), o = 0.5 (green) and o = 1 (red).



