Experimental design in nonlinear models: small-sample properties

LUC PRONZATO

CNRS, Université Côte d'Azur

1 Introduction

Regression model

model response at x_i

where the ε_i are i.i.d., with $\mathsf{E}\{\varepsilon_i\} = 0$ and $\mathsf{E}\{\varepsilon_i^2\} = \sigma^2$

1 Introduction

Regression model

model response at x_i

$$\underbrace{y_i = y(x_i)}_{\text{observation at } x_i} = \underbrace{\eta(x_i, \overline{\theta})}_{\eta(x_i, \overline{\theta})} + \underbrace{\varepsilon_i}_{\text{error}}$$

where the ε_i are i.i.d., with $E\{\varepsilon_i\} = 0$ and $E\{\varepsilon_i^2\} = \sigma^2$

$$\mathbf{X}_n = (x_1, \dots, x_n) \text{ the design}$$

$$\mathbf{y} = (y_1, \dots, y_n)^\top \text{ the vector of observations}$$

$$\eta(\theta) = (\eta(x_1, \theta), \dots, \eta(x_n, \theta))^\top \text{ the vector of model responses}$$

$$\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)^\top \text{ the errors } (\rightarrow \mathsf{E}\{\boldsymbol{\varepsilon}\} = \mathbf{0} \text{ and } \mathsf{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}_n)$$

 $heta = \mathsf{true} \; \mathsf{value} \; \mathsf{of} \; \mathsf{the} \; \mathsf{model} \; \mathsf{parameters} \; heta \in \mathbb{R}^{p}$

Least Squares (LS) estimator: $|\hat{\theta}^n = \arg \min_{\theta} ||\mathbf{y} - \boldsymbol{\eta}(\theta)||^2$

Information matrix (at θ^0 , normalised — per observation)

$$\mathsf{M}(\mathsf{X}_n, \theta^0) = \frac{1}{n} \sum_{i=1}^n \frac{\partial \eta(x_i, \theta)}{\partial \theta} \Big|_{\theta^0} \frac{\partial \eta(x_i, \theta)}{\partial \theta^\top} \Big|_{\theta^0} = \frac{1}{n} \frac{\partial \eta^\top(\theta)}{\partial \theta} \Big|_{\theta^0} \frac{\partial \eta(\theta)}{\partial \theta^\top} \Big|_{\theta^0}$$

$$(a \ p \times p \ \text{matrix, with} \ p = \dim(\theta))$$

A. Linear regression

$$\eta(x,\theta) = \mathbf{f}^{\top}(x)\theta \to \frac{\partial \eta^{\top}(\theta)}{\partial \theta} = \mathbf{F}^{\top} = (\mathbf{f}(x_1), \dots, \mathbf{f}(x_n)) \text{ and}$$
$$\hat{\theta}^n = (\mathbf{F}^{\top}\mathbf{F})^{-1}\mathbf{F}^{\top}\mathbf{y}$$

normalised information matrix: $\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \mathbf{F}^\top \mathbf{F}$

 \rightarrow choose the x_i such that \mathbf{M}_n has full rank

A. Linear regression

$$\eta(x,\theta) = \mathbf{f}^{\top}(x)\theta \to \frac{\partial \eta^{\top}(\theta)}{\partial \theta} = \mathbf{F}^{\top} = (\mathbf{f}(x_1), \dots, \mathbf{f}(x_n)) \text{ and}$$
$$\hat{\theta}^n = (\mathbf{F}^{\top}\mathbf{F})^{-1}\mathbf{F}^{\top}\mathbf{y}$$

normalised information matrix: $\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \mathbf{F}^\top \mathbf{F}$

 \rightarrow choose the x_i such that \mathbf{M}_n has full rank

$$y_{i} = \mathbf{f}^{\top}(x_{i})\bar{\theta} + \varepsilon_{i} \text{ for all } i, \text{ with } \mathsf{E}\{\varepsilon_{i}\} = 0 \text{ and } \mathsf{E}\{\varepsilon_{i}^{2}\} = \sigma^{2}$$

$$\Rightarrow \mathsf{E}\{\hat{\theta}^{n}\} = \bar{\theta}$$

$$\Rightarrow \mathsf{Var}(\hat{\theta}^{n}) = \mathsf{E}\{(\hat{\theta}^{n} - \bar{\theta})(\hat{\theta}^{n} - \bar{\theta})^{\top}\} = \frac{\sigma^{2}}{n} \mathsf{M}_{n}^{-1}$$

→ choose the x_i to minimise a scalar function of \mathbf{M}_n^{-1} or maximise a function $\Phi(\mathbf{M}_n)$ (information function (Pukelsheim, 1993))

A. Linear regression

$$\eta(x,\theta) = \mathbf{f}^{\top}(x)\theta \to \frac{\partial \eta^{\top}(\theta)}{\partial \theta} = \mathbf{F}^{\top} = (\mathbf{f}(x_1), \dots, \mathbf{f}(x_n)) \text{ and}$$
$$\hat{\theta}^n = (\mathbf{F}^{\top}\mathbf{F})^{-1}\mathbf{F}^{\top}\mathbf{y}$$

normalised information matrix: $\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \mathbf{F}^\top \mathbf{F}$

 \rightarrow choose the x_i such that \mathbf{M}_n has full rank

$$y_{i} = \mathbf{f}^{\top}(x_{i})\bar{\theta} + \varepsilon_{i} \text{ for all } i, \text{ with } \mathsf{E}\{\varepsilon_{i}\} = 0 \text{ and } \mathsf{E}\{\varepsilon_{i}^{2}\} = \sigma^{2}$$

$$\Rightarrow \mathsf{E}\{\hat{\theta}^{n}\} = \bar{\theta}$$

$$\Rightarrow \mathsf{Var}(\hat{\theta}^{n}) = \mathsf{E}\{(\hat{\theta}^{n} - \bar{\theta})(\hat{\theta}^{n} - \bar{\theta})^{\top}\} = \frac{\sigma^{2}}{n} \mathsf{M}_{n}^{-1}$$

→ choose the x_i to minimise a scalar function of \mathbf{M}_n^{-1} or maximise a function $\Phi(\mathbf{M}_n)$ (information function (Pukelsheim, 1993))

Normal errors
$$\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n) \implies \hat{\theta}^n \sim \mathcal{N}(\bar{\theta}, \frac{\sigma^2}{n} \mathbf{M}^{-1}(\mathbf{X}_n))$$

→ no particular problem with *small data*

B. Nonlinear regression

 $\eta(x,\theta)$ nonlinear in θ

Under «standard» assumptions ($\theta \in \Theta$ compact, $\eta(x, \theta)$ continuous in θ for any

x...), for a suitable sequence (x_i) ,

 $\hat{\theta}^n \stackrel{\text{a.s.}}{\to} \bar{\theta} \text{ as } n \to \infty$ (strong consistency) [but E{ $\hat{\theta}^n$ } $\neq \bar{\theta} (\hat{\theta}^n \text{ is biased})$]

B. Nonlinear regression

 $\eta(x,\theta)$ nonlinear in θ Under «standard» assumptions ($\theta \in \Theta$ compact, $\eta(x,\theta)$ continuous in θ for any x...), for a suitable sequence (x_i) ,

 $\left|\hat{\theta}^n \stackrel{\text{a.s.}}{\to} \bar{\theta} \text{ as } n \to \infty\right| \text{ (strong consistency) [but E}\{\hat{\theta}^n\} \neq \bar{\theta} (\hat{\theta}^n \text{ is biased})]$

normalised information matrix <u>at θ </u>: $\mathbf{M}_n(\theta) = \mathbf{M}(\mathbf{X}_n, \theta) = \frac{1}{n} \sum_{i=1}^n \frac{\partial \eta(\mathbf{x}_i, \theta)}{\partial \theta} \frac{\partial \eta(\mathbf{x}_i, \theta)}{\partial \theta^{\top}}$

Under «standard» regularity assumptions ($\eta(x, \theta)$ twice continuously differentiable w.r.t. θ for any x...), for a suitable sequence (x_i),

 $\left\lfloor \sqrt{n}(\hat{\theta}^n - \bar{\theta}) \stackrel{\mathrm{d}}{\to} \mathscr{N}(\mathbf{0}, \sigma^2 \mathbf{M}^{-1}(\bar{\theta})) \text{ as } n \to \infty \right\rfloor \text{(asymptotic normality)}$ with $\mathbf{M}(\theta) = \lim_{n \to \infty} \mathbf{M}_n(\theta)$

B. Nonlinear regression

 $\eta(x,\theta)$ nonlinear in θ Under «standard» assumptions ($\theta \in \Theta$ compact, $\eta(x,\theta)$ continuous in θ for any x...), for a suitable sequence (x_i) ,

 $\left|\hat{\theta}^n \stackrel{\text{a.s.}}{\to} \bar{\theta} \text{ as } n \to \infty\right| \text{ (strong consistency) [but E}\{\hat{\theta}^n\} \neq \bar{\theta} (\hat{\theta}^n \text{ is biased})]$

normalised information matrix <u>at θ </u>: $\mathbf{M}_n(\theta) = \mathbf{M}(\mathbf{X}_n, \theta) = \frac{1}{n} \sum_{i=1}^n \frac{\partial \eta(\mathbf{x}_i, \theta)}{\partial \theta} \frac{\partial \eta(\mathbf{x}_i, \theta)}{\partial \theta^{\top}}$

Under «standard» regularity assumptions ($\eta(x, \theta)$ twice continuously differentiable w.r.t. θ for any x...), for a suitable sequence (x_i),

 $\frac{\left[\sqrt{n}(\hat{\theta}^n - \bar{\theta}) \stackrel{\mathrm{d}}{\to} \mathscr{N}(\mathbf{0}, \sigma^2 \mathbf{M}^{-1}(\bar{\theta})) \text{ as } n \to \infty\right]}{\text{with } \mathbf{M}(\theta) = \lim_{n \to \infty} \mathbf{M}_n(\theta)}$ (asymptotic normality)

→ choose the x_i to minimise a scalar function of $\mathbf{M}_n^{-1}(\theta^0)$, or maximise a function $\Phi(\mathbf{M}_n(\theta^0))$, for a prior guess θ^0 (local design)

= classical approach for DoE in nonlinear models (based on asymptotic normality)

- 1) DoE for linear models (local design for nonlinear models, for a given θ^0)
 - Which information function Φ?
 - How to construct an optimal design for $\Phi?$

• 1) DoE for linear models (local design for nonlinear models, for a given θ^0)

- Which information function Φ ?
- How to construct an optimal design for $\Phi?$
- 3,4,5,6) Small-sample issues

- 1) DoE for linear models (local design for nonlinear models, for a given θ^0)
 - Which information function Φ?
 - How to construct an optimal design for $\Phi?$
- 3,4,5,6) Small-sample issues
- 7) nonlocal DoE for nonlinear models (based on asymptotic normality)

Design criterion Φ

A-optimality: minimise trace[M⁻¹] ⇔ maximise Φ(M) = 1/trace[M⁻¹]
 ⇔ minimise sum of lengthes² of axes of (asymptotic) confidence ellipsoids

Design criterion Φ

- A-optimality: minimise trace[M⁻¹] ⇔ maximise Φ(M) = 1/trace[M⁻¹]
 ⇔ minimise sum of lengthes² of axes of (asymptotic) confidence ellipsoids
- *E*-optimality: maximise Φ(M) = λ_{min}(M)
 ⇔ minimise longest axis of (asymptotic) confidence ellipsoids

Design criterion Φ

- A-optimality: minimise trace[M⁻¹] ⇔ maximise Φ(M) = 1/trace[M⁻¹]
 ⇔ minimise sum of lengthes² of axes of (asymptotic) confidence ellipsoids
- *E*-optimality: maximise Φ(M) = λ_{min}(M)
 ⇔ minimise longest axis of (asymptotic) confidence ellipsoids
- D-optimality: maximise Φ(M) = det^{1/p}(M) [p = dim(θ)]
 ⇔ minimise volume of (asymptotic) confidence ellipsoids (proportional to 1/√det(M))
 Very much used:
 - a D-optimum design is invariant by reparameterisation

$$\det \mathsf{M}'(eta(heta)) = \det \mathsf{M}(heta) \det^{-2} \left(rac{\partial eta}{\partial heta^ op}
ight)$$

often leads to repeat the same experimental conditions (replications)

A/ Exact design

n observations at $\mathbf{X}_n = (x_1, \dots, x_n)$ in a regression model (for simplicity) Each design point x_i can be anything, e.g. a point in a subset \mathscr{X} of \mathbb{R}^d

Maximise $\Phi(\mathbf{M}_n)$ w.r.t. \mathbf{X}_n with $\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$

A/ Exact design

n observations at $\mathbf{X}_n = (x_1, \dots, x_n)$ in a regression model (for simplicity) Each design point x_i can be anything, e.g. a point in a subset \mathscr{X} of \mathbb{R}^d

Maximise $\Phi(\mathbf{M}_n)$ w.r.t. \mathbf{X}_n with $\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$

If n × d not too large → standard algorithm
 [but there exist constraints (x_i ∈ X for all i), local optimas...]

A/ Exact design

n observations at $\mathbf{X}_n = (x_1, \dots, x_n)$ in a regression model (for simplicity) Each design point x_i can be anything, e.g. a point in a subset \mathscr{X} of \mathbb{R}^d

Maximise $\Phi(\mathbf{M}_n)$ w.r.t. \mathbf{X}_n with $\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$

• If $n \times d$ not too large \rightarrow standard algorithm

[but there exist constraints $(x_i \in \mathscr{X} \text{ for all } i)$, local optimas...]

• Otherwise \rightarrow take the particular form of the problem into account

Exchange methods: (Fedorov, 1972; Mitchell, 1974)

At iteration k, exchange **one** support point x_j by a better one x^* in \mathscr{X} in the sense of $\Phi(\cdot)$

$$\mathbf{X}_{n}^{k} = (x_{1}, \dots, \begin{vmatrix} x_{j} \\ \uparrow \\ x^{*} \end{vmatrix}, \dots, x_{n})$$

A/ Exact design

n observations at $\mathbf{X}_n = (x_1, \dots, x_n)$ in a regression model (for simplicity) Each design point x_i can be anything, e.g. a point in a subset \mathscr{X} of \mathbb{R}^d

Maximise $\Phi(\mathbf{M}_n)$ w.r.t. \mathbf{X}_n with $\mathbf{M}_n = \mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{f}(x_i) \mathbf{f}^\top(x_i)$

• If $n \times d$ not too large \rightarrow standard algorithm

[but there exist constraints $(x_i \in \mathscr{X} \text{ for all } i)$, local optimas...]

• Otherwise \rightarrow take the particular form of the problem into account

Exchange methods: (Fedorov, 1972; Mitchell, 1974)

At iteration k, exchange **one** support point x_j by a better one x^* in \mathscr{X} in the sense of $\Phi(\cdot)$

$$\mathbf{X}_{n}^{k} = (x_{1}, \dots, \begin{vmatrix} x_{j} \\ \vdots \\ x^{*} \end{vmatrix}, \dots, x_{n})$$

• Branch and bound (Welch, 1982), rounding an optimal design measure (Pukelsheim and Reider, 1992)

B/ Design measures: approximate design theory

(Chernoff, 1953; Kiefer and Wolfowitz, 1960; Fedorov, 1972; Silvey, 1980; Pázman, 1986; Pukelsheim, 1993; Fedorov and Leonov, 2014)

 $\mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{f}(x_i) \mathbf{f}^\top(x_i)$

[with $M(X_n) = M(X_n, \theta^0)$ and $f(x_i) = \frac{\partial \overline{\eta}(x_i, \theta)}{\partial \theta}\Big|_{\theta^0}$ in a nonlinear model] The additive form is essential (comes from the independence of observations)

B/ Design measures: approximate design theory

(Chernoff, 1953; Kiefer and Wolfowitz, 1960; Fedorov, 1972; Silvey, 1980; Pázman, 1986; Pukelsheim, 1993; Fedorov and Leonov, 2014)

 $\mathbf{M}(\mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$

[with $M(X_n) = M(X_n, \theta^0)$ and $f(x_i) = \frac{\partial \eta(x_i, \theta)}{\partial \theta}\Big|_{\theta^0}$ in a nonlinear model] The additive form is essential (comes from the independence of observations)

Repeat r_i observations at the same $x_i \in \mathscr{X}$ (r_i replications):

 \rightarrow only $m \leq n$ different x_i

 $\mathbf{M}(\mathbf{X}_n) = \sum_{i=1}^m \frac{r_i}{n} \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$

- $\frac{r_i}{n}$ = proportion of observations collected at x_i
 - = «percentage of experimental effort» at x_i
 - = weight w_i of support point x_i

$$\mathbf{M}(\mathbf{X}_n) = \sum_{i=1}^m \mathbf{w}_i \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$$

→ design $\mathbf{X}_n \Leftrightarrow \left\{ \begin{array}{cc} x_1 & \cdots & x_m \\ w_1 & \cdots & w_m \end{array} \right\}$ with $\sum_{i=1}^m w_i = 1$ → normalised discrete distribution on \mathscr{X} , with constraints $r_i/n = w_i$

$$\mathbf{M}(\mathbf{X}_n) = \sum_{i=1}^m \mathbf{w}_i \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$$

→ design $\mathbf{X}_n \Leftrightarrow \left\{ \begin{array}{ccc} x_1 & \cdots & x_m \\ w_1 & \cdots & w_m \end{array} \right\}$ with $\sum_{i=1}^m w_i = 1$

→ normalised discrete distribution on \mathscr{X} , with constraints $r_i/n = w_i$

Release the constraints $\rightarrow w_i \geq 0$ with $\sum_{i=1}^m w_i = 1$

 → ξ = discrete probability measure on *X* (= design space) with support points x_i and associated weights w_i = «approximate design»

$$\mathbf{M}(\mathbf{X}_n) = \sum_{i=1}^m \mathbf{w}_i \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$$

→ design $\mathbf{X}_n \Leftrightarrow \left\{ \begin{array}{ccc} x_1 & \cdots & x_m \\ w_1 & \cdots & w_m \end{array} \right\}$ with $\sum_{i=1}^m w_i = 1$

→ normalised discrete distribution on \mathscr{X} , with constraints $r_i/n = w_i$

Release the constraints $\rightarrow w_i \geq 0$ with $\sum_{i=1}^m w_i = 1$

 → ξ = discrete probability measure on *X* (= design space) with support points x_i and associated weights w_i = «approximate design»

More general expression: ξ = any probability measure on \mathscr{X} ($\int_{\mathscr{X}} \xi(dx) = 1$)

 $\mathsf{M}(\boldsymbol{\xi}) = \int_{\mathscr{X}} \mathbf{f}(x) \mathbf{f}^{\top}(x) \, \boldsymbol{\xi}(\mathrm{d}x)$

$$\mathbf{M}(\mathbf{X}_n) = \sum_{i=1}^m \mathbf{w}_i \mathbf{f}(x_i) \mathbf{f}^{\top}(x_i)$$

→ design $\mathbf{X}_n \Leftrightarrow \left\{ \begin{array}{ccc} x_1 & \cdots & x_m \\ w_1 & \cdots & w_m \end{array} \right\}$ with $\sum_{i=1}^m w_i = 1$

→ normalised discrete distribution on \mathscr{X} , with constraints $r_i/n = w_i$

Release the constraints $\rightarrow w_i \geq 0$ with $\sum_{i=1}^m w_i = 1$

 → ξ = discrete probability measure on *X* (= design space) with support points x_i and associated weights w_i = «approximate design»

More general expression: $\boldsymbol{\xi} = \text{any probability measure on } \mathscr{X} \left(\int_{\mathscr{X}} \boldsymbol{\xi}(dx) = 1 \right)$ $\boxed{\mathsf{M}(\boldsymbol{\xi}) = \int_{\mathscr{X}} \mathbf{f}(x) \mathbf{f}^{\top}(x) \boldsymbol{\xi}(dx)}$

$$\begin{split} \mathbf{M}(\xi) &\in \text{convex closure of the set of rank 1 matrices } \mathbf{f}(x)\mathbf{f}^{\top}(x) \\ \mathbf{M}(\xi) \text{ is symmetric } p \times p, \text{ belongs to a } \frac{p(p+1)}{2} \text{-dimensional space} \\ \text{Caratheodory Theorem } \rightarrow \text{ for any } \xi, \text{ there exists a discrete probability measure } \xi_d \\ \text{with } \frac{p(p+1)}{2} + 1 \text{ support points at most, such that } \mathbf{M}(\xi_d) = \mathbf{M}(\xi) \\ \text{(true in particular for the optimum design)} \end{split}$$

Maximise $\Phi[\mathbf{M}(\xi)]$, $\Phi(\cdot)$ concave (e.g., A, E, D-optimality) and $\mathbf{M}(\xi)$ linear in $\xi \rightarrow$ convex programming

Usually, \mathscr{X} is first discretised

→ optimise a vector of weights (possibly high dimensional, but the solution is sparse)

Typical algorithm when Φ is differentiable (*A*, *D*-optimality): Frank-Wolfe conditional gradient (called vertex-direction algorithm in DoE), with predefined (Wynn, 1970) or optimal (Fedorov, 1972) step-size [but there exist more efficient methods]

More difficult if Φ not differentiable (*E*-optimality), but feasible

Application to models with complete product-type interactions Single factor models: $\eta_k(x, \theta^{(k)}) \triangleq [\mathbf{f}^{(k)}(x)]^\top \theta^{(k)}$

global model for *d* factors
$$\mathbf{x} = (\{\mathbf{x}\}_1, \{\mathbf{x}\}_2, \dots, \{\mathbf{x}\}_d)^\top$$
:
 $\eta(\mathbf{x}, \gamma) = [\mathbf{f}_1(\{\mathbf{x}\}_1) \otimes \cdots \otimes \mathbf{f}_d(\{\mathbf{x}\}_d)]^\top \gamma$

Application to models with complete product-type interactions Single factor models: $\eta_k(x, \theta^{(k)}) \triangleq [\mathbf{f}^{(k)}(x)]^\top \theta^{(k)}$

global model for
$$d$$
 factors $\mathbf{x} = (\{\mathbf{x}\}_1, \{\mathbf{x}\}_2, \dots, \{\mathbf{x}\}_d)^\top$:
 $\eta(\mathbf{x}, \boldsymbol{\gamma}) = [\mathbf{f}_1(\{\mathbf{x}\}_1) \otimes \cdots \otimes \mathbf{f}_d(\{\mathbf{x}\}_d)]^\top \boldsymbol{\gamma}$

In particular, if η_k = polynomial of degree $d_k (\dim(\theta^{(k)}) = p_k = 1 + d_k)$, η = polynomial with total degree $\sum_{k=1}^{d} d_k (\dim(\gamma) = \prod_{k=1}^{d} p_k)$

Example:

$$\mathbf{f}^{\top}(\mathbf{x})\boldsymbol{\gamma} = (\theta_0^{(1)} + \theta_1^{(1)}\{\mathbf{x}\}_1 + \theta_2^{(1)}\{\mathbf{x}\}_1^2) \times (\theta_0^{(2)} + \theta_1^{(2)}\{\mathbf{x}\}_2 + \theta_2^{(2)}\{\mathbf{x}\}_2^2)$$

= $\gamma_0 + \gamma_1\{\mathbf{x}\}_1 + \gamma_2\{\mathbf{x}\}_2 + \gamma_{12}\{\mathbf{x}\}_1\{\mathbf{x}\}_2 + \gamma_{11}\{\mathbf{x}\}_1^2 + \gamma_{22}\{\mathbf{x}\}_2^2 + \gamma_{112}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2 + \gamma_{122}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2^2 + \gamma_{1122}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2^2 + \gamma_{122}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2^2 + \gamma_{122}\{\mathbf{x}\}_1^2 + \gamma_{12}\{\mathbf{x}\}_2^2 +$

Application to models with complete product-type interactions Single factor models: $\eta_k(x, \theta^{(k)}) \triangleq [\mathbf{f}^{(k)}(x)]^\top \theta^{(k)}$

global model for
$$d$$
 factors $\mathbf{x} = (\{\mathbf{x}\}_1, \{\mathbf{x}\}_2, \dots, \{\mathbf{x}\}_d)^\top$:
 $\eta(\mathbf{x}, \boldsymbol{\gamma}) = [\mathbf{f}_1(\{\mathbf{x}\}_1) \otimes \dots \otimes \mathbf{f}_d(\{\mathbf{x}\}_d)]^\top \boldsymbol{\gamma}$

In particular, if η_k = polynomial of degree $d_k (\dim(\theta^{(k)}) = p_k = 1 + d_k)$, η = polynomial with total degree $\sum_{k=1}^{d} d_k (\dim(\gamma) = \prod_{k=1}^{d} p_k)$

Example:

$$\mathbf{f}^{\top}(\mathbf{x})\boldsymbol{\gamma} = (\theta_0^{(1)} + \theta_1^{(1)}\{\mathbf{x}\}_1 + \theta_2^{(1)}\{\mathbf{x}\}_1^2) \times (\theta_0^{(2)} + \theta_1^{(2)}\{\mathbf{x}\}_2 + \theta_2^{(2)}\{\mathbf{x}\}_2^2)$$

= $\gamma_0 + \gamma_1\{\mathbf{x}\}_1 + \gamma_2\{\mathbf{x}\}_2 + \gamma_{12}\{\mathbf{x}\}_1\{\mathbf{x}\}_2 + \gamma_{11}\{\mathbf{x}\}_1^2 + \gamma_{22}\{\mathbf{x}\}_2^2 + \gamma_{112}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2 + \gamma_{122}\{\mathbf{x}\}_1\{\mathbf{x}\}_2^2 + \gamma_{1122}\{\mathbf{x}\}_1^2\{\mathbf{x}\}_2^2$

D. A and E-optimal design measure = tensor product of the d optimal design measures (Schwabe, 1996) (true for any complete product-type interaction model — not only for polynomials)

Luc Pronzato (CNRS)

Application to models with intercept, no interaction

Single factor models: $\eta_k(x, \theta^{(k)}) \triangleq \theta_0^{(k)} + \sum_{i=1}^{d_k} \theta_i^{(k)} f_i^{(k)}(x)$

global model for *d* factors: $\eta(\mathbf{x}, \boldsymbol{\gamma}) = \theta_0 + \sum_{k=1}^d \sum_{i=1}^{d_k} \theta_i^{(k)} f_i^{(k)}(\{\mathbf{x}\}_k)$

Application to models with intercept, no interaction

Single factor models: $\eta_k(x, \theta^{(k)}) \triangleq \theta_0^{(k)} + \sum_{i=1}^{d_k} \theta_i^{(k)} f_i^{(k)}(x)$

global model for *d* factors: $\eta(\mathbf{x}, \gamma) = \theta_0 + \sum_{k=1}^d \sum_{i=1}^{d_k} \theta_i^{(k)} f_i^{(k)}(\{\mathbf{x}\}_k)$

In particular, if η_k = polynomial of degree $d_k (\dim(\theta^{(k)}) = p_k = 1 + d_k)$, η = polynomial with total degree $\max_k^d d_k (\dim(\gamma) = 1 + \sum_{k=1}^d d_k)$ Example:

$$\mathbf{f}^{\top}(\mathbf{x})\boldsymbol{\gamma} = (\theta_0^{(1)} + \theta_1^{(1)}\{\mathbf{x}\}_1 + \theta_2^{(1)}\{\mathbf{x}\}_1^2) + (\theta_0^{(2)} + \theta_1^{(2)}\{\mathbf{x}\}_2 + \theta_2^{(2)}\{\mathbf{x}\}_2^2) = \gamma_0 + \gamma_1\{\mathbf{x}\}_1 + \gamma_2\{\mathbf{x}\}_2 + \gamma_{11}\{\mathbf{x}\}_1^2 + \gamma_{22}\{\mathbf{x}\}_2^2$$

 $\frac{D\text{-optimal design measure}}{1996} = \text{tensor product of } d D\text{-optimal measures (Schwabe, 1996)}$
Application to models with intercept, no interaction

Single factor models: $\eta_k(x, \theta^{(k)}) \triangleq \theta_0^{(k)} + \sum_{i=1}^{d_k} \theta_i^{(k)} f_i^{(k)}(x)$

global model for *d* factors: $\eta(\mathbf{x}, \boldsymbol{\gamma}) = \theta_0 + \sum_{k=1}^d \sum_{i=1}^{d_k} \theta_i^{(k)} f_i^{(k)}(\{\mathbf{x}\}_k)$

In particular, if η_k = polynomial of degree d_k $(\dim(\theta^{(k)}) = p_k = 1 + d_k)$, η = polynomial with total degree max^d_k d_k $(\dim(\gamma) = 1 + \sum_{k=1}^{d} d_k)$ Example:

$$\mathbf{f}^{\top}(\mathbf{x})\boldsymbol{\gamma} = (\theta_0^{(1)} + \theta_1^{(1)}\{\mathbf{x}\}_1 + \theta_2^{(1)}\{\mathbf{x}\}_1^2) + (\theta_0^{(2)} + \theta_1^{(2)}\{\mathbf{x}\}_2 + \theta_2^{(2)}\{\mathbf{x}\}_2^2) = \gamma_0 + \gamma_1\{\mathbf{x}\}_1 + \gamma_2\{\mathbf{x}\}_2 + \gamma_{11}\{\mathbf{x}\}_1^2 + \gamma_{22}\{\mathbf{x}\}_2^2$$

 $\frac{D\text{-optimal design measure}}{1996} = \text{tensor product of } d D\text{-optimal measures (Schwabe, 1996)}$

Hardly manageable in high dimension

(d polynomials of degree k → (k + 1)^d support points),
 but maybe a useful message for Gaussian Process models and kriging:
 → put more points along the boundaries than deeply inside (Dette and Pepelyshev, 2010)

3 Linear and nonlinear models

The expectation surface $\mathbb{S}_{\eta} = \{\eta(\theta) = (\eta(x_1, \theta), \dots, \eta(x_n, \theta))^{\top} : \theta \in \mathbb{R}^p\}$ is flat and linearly parameterised

3 Linear and nonlinear models

The expectation surface $\mathbb{S}_{\eta} = \{\eta(\theta) = (\eta(x_1, \theta), \dots, \eta(x_n, \theta))^{\top} : \theta \in \mathbb{R}^p\}$ is flat and linearly parameterised $M(X_n, \theta)$ does not depend on θ

Normal errors $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n) \implies \left| \hat{\theta}^n \sim \mathcal{N}(\bar{\theta}, \frac{\sigma^2}{n} \mathbf{M}^{-1}(\mathbf{X}_n)) \right|$

 \mathbb{S}_{η} is curved (intrinsic curvature) and nonlinearly parameterised (parametric curvature) (Bates and Watts, 1980)

 \mathbb{S}_{η} is curved (intrinsic curvature) and nonlinearly parameterised (parametric curvature) (Bates and Watts, 1980)

 $\mathbf{M}(\mathbf{X}_n, \theta)$ does depend on θ

Normal errors $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n) \implies \left[\hat{\theta}^n \sim \mathbf{?} \right]$

Ex: $\eta(\mathbf{x}, \theta) = \theta_1 \{\mathbf{x}\}_1 + \theta_1^3 (1 - \{\mathbf{x}\}_1) + \theta_2 \{\mathbf{x}\}_2 + \theta_2^2 (1 - \{\mathbf{x}\}_2)$ $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3), \mathbf{x}_1 = (0 \ 1), \mathbf{x}_2 = (1 \ 0), \mathbf{x}_3 = (1 \ 1), \theta \in [-3, 4] \times [-2, 2]$

Two major difficulties with nonlinear models:

O Asymptotically (n→∞) — or if σ² small enough — all seems fine: use linear approximation But the distribution of θ̂ⁿ may be far from normal for small n (or for σ² large) Image: Small-sample properties

Two major difficulties with nonlinear models:

• Asymptotically $(n \to \infty)$ — or if σ^2 small enough — all seems fine: use linear approximation But the distribution of $\hat{\theta}^n$ may be far from normal for small *n* (or for σ^2 large) small-sample properties

2 Everything is local (depends on θ): if we linearise, where do we linearise? (choice of a nominal value θ^0)

nonlocal optimum design

4 Small-sample properties

Asymptotically $(n \to \infty) \implies \sqrt{n}(\hat{\theta}^n - \bar{\theta}) \sim \mathscr{N}(\mathbf{0}, \sigma^2 \mathbf{M}^{-1}(\mathbf{X}_n, \bar{\theta}))$

but what is the small sample precision?

4 Small-sample properties

Asymptotically
$$(n \to \infty) \implies \sqrt{n}(\hat{\theta}^n - \bar{\theta}) \sim \mathscr{N}(\mathbf{0}, \sigma^2 \mathbf{M}^{-1}(\mathbf{X}_n, \bar{\theta}))$$

but what is the small sample precision?

A classification of regression models (Pázman, 1993)

→ Consider projection on the expectation surface S_{η} :

▶ \mathbf{P}_{θ^0} = orthogonal projector onto the tangent space to \mathbb{S}_η at $\eta(\theta^0)$:

$$\mathsf{P}_{\theta^0} = \frac{1}{n} \frac{\partial \boldsymbol{\eta}(\theta)}{\partial \theta^\top} \big|_{\theta^0} \mathsf{M}^{-1}(\mathsf{X}_n, \theta^0) \frac{\partial \boldsymbol{\eta}^\top(\theta)}{\partial \theta} \big|_{\theta^0}$$

(an $n \times n$ matrix, depends on \mathbf{X}_n)

Bates and Watts (1980) intrinsic and parametric-effect measures of nonlinearity:

$$C_{int}(\mathbf{X}_{n}, \theta; \mathbf{u}) = \frac{\|[\mathbf{I}_{n} - \mathbf{P}_{\theta}] \sum_{i,j=1}^{p} u_{i} \mathbf{H}_{ij}(\theta) u_{j}|}{n \, \mathbf{u}^{\top} \mathbf{M}(\mathbf{X}_{n}, \theta) \mathbf{u}}$$
$$C_{par}(\mathbf{X}_{n}, \theta; \mathbf{u}) = \frac{\|\mathbf{P}_{\theta} \sum_{i,j=1}^{p} u_{i} \mathbf{H}_{ij}(\theta) u_{j}\|}{n \, \mathbf{u}^{\top} \mathbf{M}(\mathbf{X}_{n}, \theta) \mathbf{u}}$$

with $\mathbf{u} \in \mathbb{R}^{p}$ and $\mathbf{H}_{ij}^{\cdot}(\theta) = \frac{\partial^{2} \boldsymbol{\eta}(\theta)}{\partial \theta_{i} \partial \theta_{j}}$

Intrinsic curvature: $C_{int}(\mathbf{X}_n, \theta) = \sup_{\mathbf{u} \in \mathbb{R}^p \setminus \{\mathbf{0}\}} C_{int}(\mathbf{X}_n, \theta; \mathbf{u})$ Parametric curvature: $C_{par}(\mathbf{X}_n, \theta) = \sup_{\mathbf{u} \in \mathbb{R}^p \setminus \{\mathbf{0}\}} C_{par}(\mathbf{X}_n, \theta; \mathbf{u})$

Intrinsically linear models

- The expectation surface S_η = {η(θ) : θ ∈ ℝ^p} is flat (plane) — intrinsic curvature ≡ 0
- There exists a reparameterisation (continuously differentiable) that makes the model linear

►
$$\mathbf{P}_{\theta}\mathbf{H}_{ij}^{\cdot}(\theta) = \mathbf{H}_{ij}^{\cdot}(\theta)$$
, where $\mathbf{H}_{ij}^{\cdot}(\theta) = \frac{\partial^{2} \boldsymbol{\eta}(\theta)}{\partial \theta_{i} \partial \theta_{j}}$

Intrinsically linear models

- The expectation surface S_η = {η(θ) : θ ∈ ℝ^p} is flat (plane) — intrinsic curvature ≡ 0
- There exists a reparameterisation (continuously differentiable) that makes the model linear

►
$$\mathbf{P}_{\theta}\mathbf{H}_{ij}^{\cdot}(\theta) = \mathbf{H}_{ij}^{\cdot}(\theta)$$
, where $\mathbf{H}_{ij}^{\cdot}(\theta) = \frac{\partial^2 \boldsymbol{\eta}(\theta)}{\partial \theta_i \partial \theta_i}$

Observing at p different x_i only (replications) makes the model intrinsically linear $p = \dim(\theta)$

Parametrically linear models

► $\mathbf{M}(\mathbf{X}_n, \theta) = \text{constant}$ ► $\mathbf{P}_{\theta}\mathbf{H}_{ii}^{*}(\theta) = \mathbf{0}$ — parametric curvature $\equiv 0$

Parametrically linear models

► $\mathbf{M}(\mathbf{X}_n, \theta) = \text{constant}$ ► $\mathbf{P}_{\theta}\mathbf{H}_{ij}^{*}(\theta) = \mathbf{0}$ — parametric curvature $\equiv 0$

Linear models

- $\succ \eta(x,\theta) = \mathbf{f}^{\top}(x)\theta + c(x)$
- the model is intrinsically and parametrically linear

Parametrically linear models

► $\mathbf{M}(\mathbf{X}_n, \theta) = \text{constant}$ ► $\mathbf{P}_{\theta}\mathbf{H}_{ii}^{*}(\theta) = \mathbf{0}$ — parametric curvature $\equiv 0$

Linear models

$$> \eta(x,\theta) = \mathbf{f}^\top(x)\theta + c(x)$$

the model is intrinsically and parametrically linear

Flat models

- A reparameterisation exists that makes the information matrix constant
- ► Riemannian curvature tensor $R_{hijk}(\theta) = T_{hjik}(\theta) T_{hkij}(\theta) \equiv 0$ with $T_{hjik}(\theta) = [\mathbf{H}_{hj}(\theta)]^{\top} [\mathbf{I}_n - \mathbf{P}_{\theta}] \mathbf{H}_{ik}^{*}(\theta)$

If all parameters but one appear linearly, then the model is flat

A classification of regression models (Pázman, 1993)

Density of the LS estimator (we suppose $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$)

Intrinsically linear models (in particular, repetitions at *p* points):

$$ightarrow$$
 exact distribution $\left| \hat{ heta}^n \sim q(heta|ar{ heta}) = rac{n^{p/2} \det^{1/2} \mathbf{M}(\mathbf{X}_n, heta)}{(2\pi)^{p/2} \sigma^p} \exp\left\{ -rac{1}{2\sigma^2} \| \eta(heta) - \eta(ar{ heta}) \|^2
ight\}$

Density of the LS estimator (we suppose $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$)

Intrinsically linear models (in particular, repetitions at p points):

 $\rightarrow \text{ exact distribution } \left| \hat{\theta}^n \sim q(\theta | \bar{\theta}) = \frac{n^{p/2} \det^{1/2} \mathsf{M}(\mathsf{X}_n, \theta)}{(2\pi)^{p/2} \sigma^p} \exp\left\{ -\frac{1}{2\sigma^2} \| \eta(\theta) - \eta(\bar{\theta}) \|^2 \right\}$

Ex: $\eta(x,\theta) = \exp(-\theta x)$, $\bar{\theta} = 2$, 15 observations at the same x = 1/2 ($\sigma^2 = 1$)

Density of the LS estimator (we suppose $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$)

Intrinsically linear models (in particular, repetitions at *p* points):

 $\rightarrow \text{ exact distribution } \left| \hat{\theta}^n \sim q(\theta | \bar{\theta}) = \frac{n^{p/2} \det^{1/2} \mathsf{M}(\mathsf{X}_n, \theta)}{(2\pi)^{p/2} \sigma^p} \exp\left\{ -\frac{1}{2\sigma^2} \| \eta(\theta) - \eta(\bar{\theta}) \|^2 \right\}$

Ex: $\eta(x,\theta) = x \theta^3$, $\overline{\theta} = 0$, all observations at the same $x \neq 0$

<u>Flat models</u>: approximate density of $\hat{\theta}^n$

$$q(\theta|\bar{\theta}) = \frac{\det[\mathbf{Q}(\theta,\bar{\theta})]}{(2\pi)^{p/2} \sigma^p n^{p/2} \det^{1/2} \mathsf{M}(\mathbf{X}_n,\theta)} \exp\left\{-\frac{1}{2\sigma^2} \|\mathbf{P}_{\theta}[\boldsymbol{\eta}(\theta) - \boldsymbol{\eta}(\bar{\theta})]\|^2\right\}$$

where $\{\mathbf{Q}(\theta,\bar{\theta})\}_{ij} = \{n \, \mathbf{M}(\mathbf{X}_n,\theta)\}_{ij} + [\boldsymbol{\eta}(\theta) - \boldsymbol{\eta}(\bar{\theta})]^{\top} [\mathbf{I}_n - \mathbf{P}_{\theta}] \mathbf{H}_{ij}(\theta)$

There exists other approximations (more complicated) for models with $R_{hijk}(\theta) \neq 0$ (non-flat)

<u>Flat models</u>: approximate density of $\hat{\theta}^n$

$$\begin{aligned} q(\theta|\bar{\theta}) &= \frac{\det[\mathbf{Q}(\theta,\bar{\theta})]}{(2\pi)^{p/2} \sigma^p n^{p/2} \det^{1/2} \mathsf{M}(\mathsf{X}_n,\theta)} \exp\left\{-\frac{1}{2\sigma^2} \|\mathbf{P}_{\theta}[\boldsymbol{\eta}(\theta) - \boldsymbol{\eta}(\bar{\theta})]\|^2\right\} \\ \text{where } \{\mathbf{Q}(\theta,\bar{\theta})\}_{ij} &= \{n \, \mathsf{M}(\mathsf{X}_n,\theta)\}_{ij} + [\boldsymbol{\eta}(\theta) - \boldsymbol{\eta}(\bar{\theta})]^\top [\mathsf{I}_n - \mathsf{P}_{\theta}] \mathsf{H}_{ij}^{\cdot}(\theta) \end{aligned}$$

There exists other approximations (more complicated) for models with $R_{hijk}(\theta) \neq 0$ (non-flat)

▶ Design of experiments? (since $q(\theta|\bar{\theta})$ depends on X_n)

(P & Pázman, 2013, Chap. 6)

1) Minimise the MSE $E\{\|\hat{\theta}^n(\mathbf{y}) - \bar{\theta}\|^2\}$

The approximation of Clarke (1980) requires the 4th-order derivatives of $\eta(\theta)$

(P & Pázman, 2013, Chap. 6)

1) Minimise the MSE $E\{\|\hat{\theta}^n(\mathbf{y}) - \bar{\theta}\|^2\}$

The approximation of Clarke (1980) requires the 4th-order derivatives of $\eta(heta)$

- \rightarrow Use the (approximate) density $q(\theta|\bar{\theta})$
- → Minimise $\int_{\Theta} \|\theta \overline{\theta}\|^2 q(\theta|\overline{\theta}) d\theta$ w.r.t. \mathbf{X}_n using stochastic approximation

(P & Pázman, 2013, Chap. 6)

1) Minimise the MSE $E\{\|\hat{\theta}^n(\mathbf{y}) - \bar{\theta}\|^2\}$

The approximation of Clarke (1980) requires the 4th-order derivatives of $\eta(heta)$

- → Use the (approximate) density $q(\theta|\bar{\theta})$
- → Minimise $\int_{\Theta} \|\theta \bar{\theta}\|^2 q(\theta|\bar{\theta}) d\theta$ w.r.t. \mathbf{X}_n using stochastic approximation

<u>Problem</u>: we need to force θ to remain in Θ \rightarrow the integral can be made equal to 0

(P & Pázman, 2013, Chap. 6)

1) Minimise the MSE $E\{\|\hat{\theta}^n(\mathbf{y}) - \bar{\theta}\|^2\}$

The approximation of Clarke (1980) requires the 4th-order derivatives of $\eta(heta)$

- → Use the (approximate) density $q(\theta|\bar{\theta})$
- → Minimise $\int_{\Theta} \|\theta \overline{\theta}\|^2 q(\theta|\overline{\theta}) d\theta$ w.r.t. \mathbf{X}_n using stochastic approximation

<u>Problem</u>: we need to force θ to remain in Θ \rightarrow the integral can be made equal to 0 <u>Solution</u>: approximate the density $\tilde{q}_w(\theta|\bar{\theta})$ of a penalised LS estimator $\tilde{\theta}^n$ $\tilde{\theta}^n = \arg \min_{\theta} \{ \|\mathbf{y} - \boldsymbol{\eta}(\theta)\|^2 + 2w(\theta) \}$ where $w(\theta)$ forces θ to remain in $\Theta [w(\theta) = +\infty$ outside Θ]

→ Minimise $\int_{\Theta} \|\theta - \bar{\theta}\|^2 \tilde{q}_w(\theta|\bar{\theta}) \, \mathrm{d}\theta$ w.r.t. \mathbf{X}_n

[also covers the case of max. a posteriori estimation (relate $w(\theta)$ to the prior on θ)] (P & Pázman, 1992; Pázman and Gauchi, 2006)

2) Use a small-sample variant of D-optimal design

A D-optimal design minimises

(i) the volume of asymptotic (ellipsoidal) confidence regions

(*ii*) the (Shannon) entropy of the asymptotic distribution of $\hat{\theta}^n$

2) Use a small-sample variant of D-optimal design

A D-optimal design minimises

- (i) the volume of asymptotic (ellipsoidal) confidence regions
- (*ii*) the (Shannon) entropy of the asymptotic distribution of $\hat{\theta}^n$

Hamilton and Watts (1985) minimize the (approximate) volume $V(\mathbf{X}_n, \theta^0)$ of (approximate) confidence regions ($V(\mathbf{X}_n, \theta^0)$ has an explicit form and a geometrical interpretation)

Vila (1990); Vila and Gauchi (2007) minimize the expected volume of exact confidence regions (not ellipsoidal, not necessarily of minimum volume), using stochastic approximation

→ Choose X_n that minimises the approximate entropy of the approximate distribution of $\hat{\theta}^n$ (P & Pázman, 1994b)

Minimise $\operatorname{Ent}[q(\cdot|\bar{\theta})] = -\int_{\mathbb{R}^n} \log[q(\hat{\theta}^n(\mathbf{y})|\bar{\theta})]\varphi(\mathbf{y}|\mathbf{X}_n,\bar{\theta}) \,\mathrm{d}\mathbf{y}$ w.r.t. \mathbf{X}_n

where $\varphi(\mathbf{y}|\mathbf{X}_n, \bar{\theta})$ corresponds to $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\eta}(\bar{\theta}), \sigma^2 \mathbf{I}_n)$

→ Choose X_n that minimises the approximate entropy of the approximate distribution of $\hat{\theta}^n$ (P & Pázman, 1994b)

Minimise
$$\operatorname{Ent}[q(\cdot|\bar{\theta})] = -\int_{\mathbb{R}^n} \log[q(\hat{\theta}^n(\mathbf{y})|\bar{\theta})] \varphi(\mathbf{y}|\mathbf{X}_n,\bar{\theta}) \, \mathrm{d}\mathbf{y} \text{ w.r.t. } \mathbf{X}_n$$

where $\varphi(\mathbf{y}|\mathbf{X}_n, \bar{\theta})$ corresponds to $\mathbf{y} \sim \mathscr{N}(\boldsymbol{\eta}(\bar{\theta}), \sigma^2 \mathbf{I}_n)$

Use a 2nd order Taylor development of log[$q(\hat{ heta}^n(\mathbf{y})|ar{ heta})$] around $\mathbf{y}=\eta(ar{ heta})$:

$$\operatorname{Ent}[q(\cdot|\bar{\theta})] = -\log q(\bar{\theta}|\bar{\theta}) - \frac{\sigma^2}{2} \sum_{i=1}^{N} \frac{\partial^2 \log q[\hat{\theta}(\mathbf{y})|\bar{\theta}]}{\partial y_i^2} \bigg|_{\eta(\bar{\theta})} + \mathcal{O}(\sigma^4)$$

After some (lengthy) calculations...

Ent[
$$q(\cdot|\bar{\theta})$$
] = $\underbrace{\frac{p}{2}[1 + \log(2\pi\sigma^2)] - \frac{1}{2}\log\det[n\mathbf{M}(\mathbf{X}_n,\bar{\theta})]}_{h,i,j,k=1} - \frac{\sigma^2}{2n}\sum_{h,i,j,k=1}^{p} \left(\{\mathbf{M}^{-1}(\mathbf{X}_n,\bar{\theta})\}_{ij}\left[\frac{1}{n}\{\mathbf{M}^{-1}(\mathbf{X}_n,\bar{\theta})\}_{kh}[R_{kjhi}(\bar{\theta}) + U_{kij}^h(\bar{\theta})]\right]_{kh} - G_{ki}^h(\bar{\theta})G_{hj}^k(\bar{\theta}) - G_{kh}^k(\bar{\theta})G_{ij}^h(\bar{\theta})\right]_{kh} + \mathcal{O}(\sigma^4)$

where
$$U_{kij}^{h}(\theta) = \frac{\partial^{3} \eta^{\top}(\theta)}{\partial \theta_{k} \partial \theta_{i} \partial \theta_{j}} \frac{\partial \eta(\theta)}{\partial \theta_{h}}$$

 $G_{ij}^{k}(\theta) = \frac{1}{n} \sum_{h=1}^{p} \frac{\partial \eta^{\top}(\theta)}{\partial \theta_{h}} \mathbf{H}_{ij} \{ \mathbf{M}^{-1}(\mathbf{X}_{n}, \bar{\theta}) \}_{hk}$

with $R_{hijk}(\theta) = T_{hjik}(\theta) - T_{hkij}(\theta)$, $T_{hjik}(\theta) = [\mathbf{H}_{hj}(\theta)]^{\top} [\mathbf{I}_n - \mathbf{P}_{\theta}] \mathbf{H}_{ik}(\theta)$ and $\mathbf{H}_{ij}(\theta) = \frac{\partial^2 \eta(\theta)}{\partial \theta_i \partial \theta_j}$

3) Related work using the approximate density $q(\theta|\bar{\theta})$

3a) (approximate) marginal densities of $\hat{\theta}^n$ (Pázman & P, 1996)

Denote $\gamma = h(\theta)$ [with $\gamma = \theta_i$ for some $i \in \{1, \dots, p = \dim(\theta)\}$ as particular case]

$$q(\gamma|\bar{\theta}) = \frac{1}{\sqrt{2\pi}\sigma \|\mathbf{b}_{\gamma}\|} \exp\left\{-\frac{1}{2\sigma^{2}}\|\mathbf{P}_{\gamma}[\boldsymbol{\eta}(\theta_{\gamma}) - \boldsymbol{\eta}(\bar{\theta})]\|^{2}\right\}$$

where

$$\begin{aligned} \theta_{\gamma} &= \arg \min_{\theta:h(\theta)=\gamma} \|\boldsymbol{\eta}(\theta) - \boldsymbol{\eta}(\bar{\theta})\|^{2} \\ \mathbf{b}_{\gamma} &= \left. \frac{1}{n} \frac{\partial \boldsymbol{\eta}(\theta)}{\partial \theta^{\top}} \right|_{\theta_{\gamma}} \mathbf{M}^{-1}(\mathbf{X}_{n}, \theta_{\gamma}) \frac{\partial h(\theta)}{\partial \theta} \right|_{\theta_{\gamma}} \\ \mathbf{P}_{\gamma} &= \left. \frac{\mathbf{b}_{\gamma} \mathbf{b}_{\gamma}^{\top}}{\|\mathbf{b}_{\gamma}\|^{2}} \end{aligned}$$

[There also exist more precise approximations, more complicated; the difficulty compared to (Tierney et al., 1989) is that $\hat{\theta}^n(\mathbf{y})$ is not known explicitly]

\rightarrow Can be used to compare experiments

Ex: a two-compartment model in pharmacokinetics (P & Pázman, 2001) Observe $y(t) = x_C(t)/V + \varepsilon(t)$ where $x_C(t)$ evolves according to

$$\begin{cases} \frac{dx_C(t)}{dt} = (-K_{EL} - K_{CP})x_C(t) + K_{PC}x_P(t) + u(t)\\ \frac{dx_P(t)}{dt} = K_{CP}x_C(t) - K_{PC}x_P(t) \end{cases}$$

errors $\epsilon(t_i)$ i.i.d. $\mathcal{N}(0, \sigma^2)$

→ Can be used to compare experiments

Ex: a two-compartment model in pharmacokinetics (P & Pázman, 2001) Observe $y(t) = x_C(t)/V + \varepsilon(t)$ where $x_C(t)$ evolves according to

$$\begin{cases} \frac{dx_C(t)}{dt} = (-K_{EL} - K_{CP})x_C(t) + K_{PC}x_P(t) + u(t)\\ \frac{dx_P(t)}{dt} = K_{CP}x_C(t) - K_{PC}x_P(t) \end{cases}$$

errors $\epsilon(t_i)$ i.i.d. $\mathcal{N}(0, \sigma^2)$

→ 4 unknown parameters $\theta = (K_{CP}, K_{PC}, K_{EL}, V)^{\top}$

Compare 2 designs (8 observation times each) using simulated experiments with a given true $\bar{\theta}$

3b) Bias correction for LS estimation in nonlinear regression

$$\mathbf{b}(\bar{\theta}) = \text{bias of } \hat{\theta}^{n} = \mathsf{E}_{\mathbf{X}_{n},\bar{\theta}}\{\hat{\theta}^{n}(\mathbf{y})\} - \bar{\theta}$$

$$= \underbrace{-\frac{\sigma^{2}}{2n^{2}} \mathsf{M}^{-1}(\mathbf{X}_{n},\bar{\theta}) \frac{\partial \eta^{\top}(\theta)}{\partial \theta}}_{=\bar{b}(\bar{\theta}) (\mathsf{Box}, 1971)}^{p} \mathsf{H}_{ij}^{*}(\bar{\theta}) \{\mathsf{M}^{-1}(\mathbf{X}_{n},\bar{\theta})\}_{ij} + \mathcal{O}(\sigma^{4})$$

We can write
$$\hat{\theta}^n = \mathbf{b}(\bar{\theta}) + \bar{\theta} + \omega$$
, with $\mathsf{E}_{\mathbf{X}_n,\bar{\theta}}\{\omega\} = \mathbf{0}$
Two-stage LS: solve $\left[\hat{\theta}^n = \mathbf{b}(\theta) + \theta\right]$ for $\theta \rightarrow \hat{\theta}^{n,*}$

 $[\hat{ heta}^{n,*}$ unbiased when $\mathbf{b}(heta) = \mathbf{A} heta + \mathbf{c}$ for all heta with $\mathbf{I}_p + \mathbf{A}$ nonsingular]

<u>1st method</u>: $\hat{\theta}^{n,0} = \hat{\theta}^n$ given, then

$$\hat{\theta}^{n,1} = \hat{\theta}^n - \mathbf{b}(\hat{\theta}^{n,0})$$
[...sometimes more biased than $\hat{\theta}^n$ (Picard and Prum, 1992)]

<u>1st method</u>: $\hat{\theta}^{n,0} = \hat{\theta}^n$ given, then

 $\hat{\theta}^{n,1} = \hat{\theta}^n - \mathbf{b}(\hat{\theta}^{n,0})$ [...sometimes more biased than $\hat{\theta}^n$ (Picard and Prum, 1992)] $\hat{\theta}^{n,2} = \hat{\theta}^n - \mathbf{b}(\hat{\theta}^{n,1})$ $\vdots = \vdots$ $\hat{\theta}^{n,*} = \hat{\theta}^{n,\infty} = \hat{\theta}^n - \mathbf{b}(\hat{\theta}^{n,\infty})$

that is, $\hat{\theta}^{n,*} + \mathbf{b}(\hat{\theta}^{n,*}) = \hat{\theta}^n$, or $\mathsf{E}_{\mathbf{X}_n,\hat{\theta}^{n,*}}\{\hat{\theta}^n(\mathbf{y})\} = \boxed{\int_{\mathbb{R}^n} \hat{\theta}^n(\mathbf{y}) \,\varphi(\mathbf{y}|\mathbf{X}_n,\hat{\theta}^{n,*}) \,\mathrm{d}\mathbf{y} = \hat{\theta}^n}$ <u>1st method</u>: $\hat{\theta}^{n,0} = \hat{\theta}^n$ given, then

 $\hat{\theta}^{n,1} = \hat{\theta}^n - \mathbf{b}(\hat{\theta}^{n,0})$ [...sometimes more biased than $\hat{\theta}^n$ (Picard and Prum, 1992)] $\hat{\theta}^{n,2} = \hat{\theta}^n - \mathbf{b}(\hat{\theta}^{n,1})$ $\vdots = \vdots$ $\hat{\theta}^{n,*} = \hat{\theta}^{n,\infty} = \hat{\theta}^n - \mathbf{b}(\hat{\theta}^{n,\infty})$

that is,
$$\hat{\theta}^{n,*} + \mathbf{b}(\hat{\theta}^{n,*}) = \hat{\theta}^{n}$$
, or

$$\mathsf{E}_{\mathbf{X}_{n},\hat{\theta}^{n,*}}\{\hat{\theta}^{n}(\mathbf{y})\} = \boxed{\int_{\mathbb{R}^{n}} \hat{\theta}^{n}(\mathbf{y}) \varphi(\mathbf{y}|\mathbf{X}_{n},\hat{\theta}^{n,*}) \,\mathrm{d}\mathbf{y} = \hat{\theta}^{n}}$$

Solve for $\hat{\theta}^{n,*}$ using stochastic approximation (P & Pázman, 1994a)

2nd method (approximate): use $\tilde{\boldsymbol{b}}$ instead of \boldsymbol{b}

2nd method (approximate): use $\tilde{\boldsymbol{b}}$ instead of \boldsymbol{b}

Solve for
$$ilde{ heta}^{n,*}$$
: $ilde{ heta}^{n,*} + ilde{ heta}(ilde{ heta}^{n,*}) = \hat{ heta}^n$

that is

$$\tilde{\theta}^{n,*} - \frac{\sigma^2}{2n^2} \mathbf{M}^{-1}(\mathbf{X}_n, \tilde{\theta}^{n,*}) \frac{\partial \boldsymbol{\eta}^\top(\theta)}{\partial \theta} \Big|_{\tilde{\theta}^{n,*}} \sum_{i,j=1}^p \mathbf{H}_{ij}(\tilde{\theta}^{n,*}) \{ \mathbf{M}^{-1}(\mathbf{X}_n, \tilde{\theta}^{n,*}) \}_{ij} = \hat{\theta}^n$$

[Different from the score-corrected estimator $\hat{\theta}_{sc}^{n}$ of (Firth, 1993): \rightarrow solve $\frac{\partial \eta^{\top}(\theta)}{\partial \theta} [\mathbf{y} - \eta(\theta)] - \mathbf{M}(\mathbf{X}_{n}, \theta) \tilde{\mathbf{b}}(\theta) = \mathbf{0}$ for θ]

(Pázman & P, 1998) gives the (approximate) joint and marginal densities of $\hat{\theta}^{n,*}$ and $\hat{\theta}^{n}_{sc}$

6 Extended optimality criteria

(P & Pázman, 2013, Chap. 7)

 \mathbb{S}_{η} may overlap, there may be local minimisers for the LS problem... Important and difficult problem, often neglected

Experimental design in nonlinear models

What can we do at the design stage?

- extensions of usual optimality criteria
- → Avoid situations where $\|\eta(\theta) \eta(\bar{\theta})\|$ can be small when $\|\theta \bar{\theta}\|$ is large:

maximise
$$\phi_{eE}(\mathbf{X}_n, \theta^0) = \min_{\theta} \frac{\|\boldsymbol{\eta}(\theta) - \boldsymbol{\eta}(\theta^0)\|^2}{\|\theta - \theta^0\|^2}$$

corresponds to *E*-optimal design (\Leftrightarrow maximise $\lambda_{\min}[\mathbf{M}(\mathbf{X}_n)]$) when η is linear

What can we do at the design stage?

- extensions of usual optimality criteria
- → Avoid situations where $\|\eta(\theta) \eta(\bar{\theta})\|$ can be small when $\|\theta \bar{\theta}\|$ is large:

maximise
$$\phi_{eE}(\mathbf{X}_n, \theta^0) = \min_{\theta} \frac{\|\boldsymbol{\eta}(\theta) - \boldsymbol{\eta}(\theta^0)\|^2}{\|\theta - \theta^0\|^2}$$

corresponds to *E*-optimal design (\Leftrightarrow maximise $\lambda_{\min}[\mathbf{M}(\mathbf{X}_n)]$) when η is linear Extensions of *E*-, *G*- and *c*-optimal design in (Pázman & P, 2014)

What can we do at the design stage?

- extensions of usual optimality criteria
- → Avoid situations where $\|\eta(\theta) \eta(\bar{\theta})\|$ can be small when $\|\theta \bar{\theta}\|$ is large:

maximise
$$\phi_{eE}(\mathbf{X}_n, \theta^0) = \min_{\theta} \frac{\|\boldsymbol{\eta}(\theta) - \boldsymbol{\eta}(\theta^0)\|^2}{\|\theta - \theta^0\|^2}$$

corresponds to *E*-optimal design (\Leftrightarrow maximise $\lambda_{\min}[\mathbf{M}(\mathbf{X}_n)]$) when η is linear

Extensions of E-, G- and c-optimal design in (Pázman & P, 2014)

Extensions to generalised regression models and other design criteria in the Ph.D. thesis (Sternmüllerová, 2019)

7 Nonlocal DoE for nonlinear models

(P & Pázman, 2013, Chap. 8)

Nonlinear model **everything is local**

7 Nonlocal DoE for nonlinear models

(P & Pázman, 2013, Chap. 8)

Nonlinear model **everything is local**

 $\phi(\cdot)$ an information criterion, to be maximised with respect to the design X_n : $\phi(X_n) = \phi(X_n, \theta)$, but which θ ?

Luc Pronzato (CNRS)

Experimental design in nonlinear models

Local optimum design: based on a nominal value $\theta^0 \rightarrow \text{maximize } \phi(\mathbf{X}_n, \theta^0)$ [concerns all methods considered so far, based on asymptotic normality (AN) or small-sample properties] Local optimum design: based on a nominal value $\theta^0 \rightarrow \text{maximize } \phi(\mathbf{X}_n, \theta^0)$ [concerns all methods considered so far, based on asymptotic normality (AN) or small-sample properties]

Objective of nonlocal DoE: remove the dependence in θ^0 3 main classes, essentially for $\phi(\xi, \theta) = \Phi[\mathbf{M}(\mathbf{X}_n, \theta)]$ (based on AN) Local optimum design: based on a nominal value $\theta^0 \rightarrow \text{maximize } \phi(\mathbf{X}_n, \theta^0)$ [concerns all methods considered so far, based on asymptotic normality (AN) or small-sample properties]

Objective of nonlocal DoE: remove the dependence in θ^0 3 main classes, essentially for $\phi(\xi, \theta) = \Phi[\mathbf{M}(\mathbf{X}_n, \theta)]$ (based on AN)

• Average optimum design: maximise $E_{\theta}\{\phi(X_n, \theta)\}$ (or $E_{\theta}\{\phi(\xi, \theta)\}$)

Local optimum design: based on a nominal value $\theta^0 \rightarrow \text{maximize } \phi(\mathbf{X}_n, \theta^0)$ [concerns all methods considered so far, based on asymptotic normality (AN) or small-sample properties]

Objective of nonlocal DoE: remove the dependence in θ^0 3 main classes, essentially for $\phi(\xi, \theta) = \Phi[\mathbf{M}(\mathbf{X}_n, \theta)]$ (based on AN)

1 Average optimum design: maximise $E_{\theta}\{\phi(X_n, \theta)\}$ (or $E_{\theta}\{\phi(\xi, \theta)\}$) **2** Maximin optimum design: maximise $\min_{\theta}\{\phi(X_n, \theta)\}$ (or $\min_{\theta}\{\phi(\xi, \theta)\}$) **3** Between **1** and **2**: regularised maximin criteria, quantiles and probability level criteria Local optimum design: based on a nominal value $\theta^0 \rightarrow \text{maximize } \phi(\mathbf{X}_n, \theta^0)$ [concerns all methods considered so far, based on asymptotic normality (AN) or small-sample properties]

Objective of nonlocal DoE: remove the dependence in θ^0 3 main classes, essentially for $\phi(\xi, \theta) = \Phi[\mathbf{M}(\mathbf{X}_n, \theta)]$ (based on AN)

1 Average optimum design: maximise $E_{\theta}\{\phi(X_n, \theta)\}$ (or $E_{\theta}\{\phi(\xi, \theta)\}$) **2** Maximin optimum design: maximise $\min_{\theta}\{\phi(X_n, \theta)\}$ (or $\min_{\theta}\{\phi(\xi, \theta)\}$) **3** Between **1** and **2**: regularised maximin criteria, quantiles and probability level criteria

❸ Sequential design

Probability measure $\mu(d\theta)$ on $\Theta \subseteq \mathbb{R}^p$ (\neq Bayesian estimation) $\phi(\cdot, \theta^0) \rightarrow \phi_A(\cdot) = \int_{\Theta} \phi(\cdot, \theta) \, \mu(d\theta)$

[No difficulty if Θ is finite and $\mu = \sum_{i=1}^{M} \alpha_i \delta_{\theta}^{(i)}$ (integral \rightarrow finite sum); otherwise, use stochastic approximation to avoid evaluations of integrals]

Probability measure $\mu(d\theta)$ on $\Theta \subseteq \mathbb{R}^p$ (\neq Bayesian estimation) $\phi(\cdot, \theta^0) \rightarrow \phi_A(\cdot) = \int_{\Theta} \phi(\cdot, \theta) \, \mu(d\theta)$

[No difficulty if Θ is finite and $\mu = \sum_{i=1}^{M} \alpha_i \delta_{\theta}^{(i)}$ (integral \rightarrow finite sum); otherwise, use stochastic approximation to avoid evaluations of integrals]

 $\phi_A(\xi)$ is concave in ξ when each $\phi(\xi, \theta)$ is concave \blacksquare same properties and same algorithms as for local design

Probability measure $\mu(d\theta)$ on $\Theta \subseteq \mathbb{R}^p$ (\neq Bayesian estimation) $\phi(\cdot, \theta^0) \rightarrow \phi_A(\cdot) = \int_{\Theta} \phi(\cdot, \theta) \, \mu(d\theta)$

[No difficulty if Θ is finite and $\mu = \sum_{i=1}^{M} \alpha_i \delta_{\theta}^{(i)}$ (integral \rightarrow finite sum); otherwise, use stochastic approximation to avoid evaluations of integrals]

 $\phi_A(\xi)$ is concave in ξ when each $\phi(\xi, \theta)$ is concave \blacksquare same properties and same algorithms as for local design

Maximin Optimum design

$$\phi(\cdot, \theta^0) \to \phi_M(\cdot) = \min_{\theta \in \Theta} \phi(\cdot, \theta)$$

 $\phi_M(\xi)$ is concave in ξ when each $\phi(\xi, \theta)$ is concave, but $\phi_M(\cdot)$ is non-differentiable

Probability measure $\mu(d\theta)$ on $\Theta \subseteq \mathbb{R}^p$ (\neq Bayesian estimation) $\phi(\cdot, \theta^0) \rightarrow \phi_A(\cdot) = \int_{\Theta} \phi(\cdot, \theta) \, \mu(d\theta)$

[No difficulty if Θ is finite and $\mu = \sum_{i=1}^{M} \alpha_i \delta_{\theta}^{(i)}$ (integral \rightarrow finite sum); otherwise, use stochastic approximation to avoid evaluations of integrals]

 $\phi_A(\xi)$ is concave in ξ when each $\phi(\xi, \theta)$ is concave same properties and same algorithms as for local design

Maximin Optimum design

$$\phi(\cdot, \theta^0) \to \phi_M(\cdot) = \min_{\theta \in \Theta} \phi(\cdot, \theta)$$

 $\phi_M(\xi)$ is concave in ξ when each $\phi(\xi, \theta)$ is concave, but $\phi_M(\cdot)$ is non-differentiable

Problems

• Optimal design for $\phi_A(\cdot)$ not invariant by a monotone transformation of $\phi(\cdot, \theta)$ • Optimal design for $\phi_M(\cdot)$ very sensitive to the choice of the boundary of Θ

Between **1** and **2**: quantiles and probability level criteria

→ maximise P_u for a given u, or maximise Q_α for a given α (when $\alpha \rightarrow 0$, tends to maximin optimality)

Directional derivatives, algorithms \dots but the criteria are not concave: \rightarrow no guarantee of successful maximisation Directional derivatives, algorithms \dots but the criteria are not concave: \rightarrow no guarantee of successful maximisation

<u>A related very promising approach</u>: maximise the conditional value at risk (or superquantile) as proposed by Valenzuela et al. (2015)

$$\phi_{\alpha}(\mathbf{X}_{n}) = \max_{t \in \mathbb{R}} \left\{ t + \frac{1}{\alpha} \int_{\Theta} \min\left[0, \phi(\mathbf{X}_{n}; \boldsymbol{\theta}) - t\right] \, \mu(\mathrm{d}\boldsymbol{\theta}) \right\}$$

When μ has a density (w.r.t. Lebesgue measure on Θ) then

$$\phi_{\alpha}(\mathbf{X}_{n}) = \frac{1}{\alpha} \int_{\{\theta:\phi(\mathbf{X}_{n};\theta) < Q_{\alpha}(\mathbf{X}_{n})\}} \phi(\mathbf{X}_{n};\theta) \, \mu(\mathrm{d}\theta)$$

 $\phi(\xi, \theta)$ concave in $\xi \Rightarrow \phi_{\alpha}(\xi)$ concave $\phi_1(\mathbf{X}_n) = \phi_A(\mathbf{X}_n)$ and $\phi_{\alpha}(\mathbf{X}_n) \Rightarrow \phi_M(\mathbf{X}_n)$ as $\alpha \to 0$ [part of the Ph.D. thesis (Sternmüllerová, 2019)]

8 Sequential design

$$\begin{array}{l} \theta^{0} \rightarrow \text{design: } \mathbf{X}^{1} = \arg \max_{\mathbf{X}} \phi(\mathbf{X}, \theta^{0}) \\ \rightarrow \text{ observe: } \mathbf{y}^{1} = \mathbf{y}^{1}(\mathbf{X}^{1}) \\ \rightarrow \text{ estimate: } \hat{\theta}^{1} = \arg \min_{\theta} LS(\theta; \mathbf{y}^{1}, \mathbf{X}^{1}) \\ \rightarrow \text{ design: } \mathbf{X}^{2} = \arg \max_{\mathbf{X}} \phi(\{\mathbf{X}^{1}, \mathbf{X}\}, \hat{\theta}^{1}) \\ \rightarrow \text{ observe: } \mathbf{y}^{2} = \mathbf{y}^{2}(\mathbf{X}^{2}) \\ \rightarrow \text{ estimate: } \hat{\theta}^{2} = \arg \min_{\theta} LS(\theta; \{\mathbf{y}^{1}, \mathbf{y}^{2}\}, \{\mathbf{X}^{1}, \mathbf{X}^{2}\}) \\ \rightarrow \text{ design: } \mathbf{X}^{3} = \arg \max_{\mathbf{X}} \phi(\{\mathbf{X}^{1}, \mathbf{X}^{2}, \mathbf{X}\}, \hat{\theta}^{2}) \\ \dots \text{ etc.} \end{array}$$

8 Sequential design

$$\begin{aligned} \theta^{0} &\to \text{design: } \mathbf{X}^{1} = \arg \max_{\mathbf{X}} \phi(\mathbf{X}, \theta^{0}) \\ &\to \text{observe: } \mathbf{y}^{1} = \mathbf{y}^{1}(\mathbf{X}^{1}) \\ &\to \text{estimate: } \hat{\theta}^{1} = \arg \min_{\theta} LS(\theta; \mathbf{y}^{1}, \mathbf{X}^{1}) \\ &\to \text{design: } \mathbf{X}^{2} = \arg \max_{\mathbf{X}} \phi(\{\mathbf{X}^{1}, \mathbf{X}\}, \hat{\theta}^{1}) \\ &\to \text{observe: } \mathbf{y}^{2} = \mathbf{y}^{2}(\mathbf{X}^{2}) \\ &\to \text{estimate: } \hat{\theta}^{2} = \arg \min_{\theta} LS(\theta; \{\mathbf{y}^{1}, \mathbf{y}^{2}\}, \{\mathbf{X}^{1}, \mathbf{X}^{2}\}) \\ &\to \text{design: } \mathbf{X}^{3} = \arg \max_{\mathbf{X}} \phi(\{\mathbf{X}^{1}, \mathbf{X}^{2}, \mathbf{X}\}, \hat{\theta}^{2}) \\ &\dots \text{etc.} \end{aligned}$$

→ Replace unknown θ by best current guess θ^{κ} (there exist variants with Bayesian estimation and average optimality)

8 Sequential design

$$\begin{array}{l} \theta^{0} \rightarrow \text{design: } \mathbf{X}^{1} = \arg\max_{\mathbf{X}}\phi(\mathbf{X},\theta^{0}) \\ \rightarrow \text{ observe: } \mathbf{y}^{1} = \mathbf{y}^{1}(\mathbf{X}^{1}) \\ \rightarrow \text{ estimate: } \hat{\theta}^{1} = \arg\min_{\theta} LS(\theta;\mathbf{y}^{1},\mathbf{X}^{1}) \\ \rightarrow \text{ design: } \mathbf{X}^{2} = \arg\max_{\mathbf{X}}\phi(\{\mathbf{X}^{1},\mathbf{X}\},\hat{\theta}^{1}) \\ \rightarrow \text{ observe: } \mathbf{y}^{2} = \mathbf{y}^{2}(\mathbf{X}^{2}) \\ \rightarrow \text{ estimate: } \hat{\theta}^{2} = \arg\min_{\theta} LS(\theta;\{\mathbf{y}^{1},\mathbf{y}^{2}\},\{\mathbf{X}^{1},\mathbf{X}^{2}\}) \\ \rightarrow \text{ design: } \mathbf{X}^{3} = \arg\max_{\mathbf{X}}\phi(\{\mathbf{X}^{1},\mathbf{X}^{2},\mathbf{X}\},\hat{\theta}^{2}) \\ \dots \text{ etc.} \end{array}$$

→ Replace unknown θ by best current guess $\hat{\theta}^k$ (there exist variants with Bayesian estimation and average optimality)

Consistency of $\hat{\theta}^n$? Asymptotic normality (for designs based on M)? (difficulty: \mathbf{X}^k depends on $\mathbf{y}^1, \dots, \mathbf{y}^{k-1} \Longrightarrow$ independence is lost)

■ No big difficulty if $q \ge p = \dim(\theta)$ (batch sequential design)

■ No big difficulty if $q \ge p = \dim(\theta)$ (batch sequential design)

If *n* observation in total, two stages only: size of first batch?

 \rightarrow should be proportional to \sqrt{n} (which does not say much ...)

→ No big difficulty if $q \ge p = \dim(\theta)$ (batch sequential design)

If *n* observation in total, two stages only: size of first batch?

 \rightarrow should be proportional to \sqrt{n} (which does not say much ...)

Full sequential design: $\mathbf{X}^k = \{x_k\} \ (q = 1)$

 \rightarrow convergence properties are difficult to investigate. . .

⇒ No big difficulty if $q \ge p = \dim(\theta)$ (batch sequential design) If *n* observation in total, two stages only: size of first batch? → should be proportional to \sqrt{n} (which does not say much ...)

Full sequential design: $\mathbf{X}^k = \{x_k\} \ (q = 1)$

 \rightarrow convergence properties are difficult to investigate. . .

When

$$\mathbf{M}(\mathbf{X}_{k+1}, \hat{\theta}^{k}) = \frac{k}{k+1} \mathbf{M}(\mathbf{X}_{k}, \hat{\theta}^{k}) + \frac{1}{k+1} \frac{\partial \eta(x_{k+1}, \theta)}{\partial \theta} \Big|_{\hat{\theta}^{k}} \frac{\partial \eta(x_{k+1}, \theta)}{\partial \theta^{\top}} \Big|_{\hat{\theta}^{k}}$$

with $x_{k+1} = \arg \max_{\mathscr{X}} \underbrace{F_{\phi}(\xi^{k}; \delta_{x} | \hat{\theta}^{k})}_{\text{directional derivative}} \Leftrightarrow \operatorname{conditional gradient algorithm}_{\text{with step-size } \frac{1}{k+1}}$ (Wynn, 1970)

 ▶ some CV results for Bayesian estimation (Hu, 1998)
 ▶ no general CV results for LS and ML estimation, [unless X = {x⁽¹⁾,...,x^(ℓ)} finite (P 2009, 2010)]

DoE for nonlinear models with small data:

 \checkmark Using the small-sample properties of the estimator can be a bit tricky

DoE for nonlinear models with small data:

- ✓ Using the small-sample properties of the estimator can be a bit tricky
- ✓ <u>Numerical simulations</u> are useful: for instance, construct a locally optimum design (at θ⁰), simulate data (for another θ¹), estimate θ (correct the bias), check closeness to θ¹ (plot marginals), repeat (for other θ⁰ and θ¹), etc.

DoE for nonlinear models with small data:

- ✓ Using the small-sample properties of the estimator can be a bit tricky
- ✓ <u>Numerical simulations</u> are useful: for instance, construct a locally optimum design (at θ⁰), simulate data (for another θ¹), estimate θ (correct the bias), check closeness to θ¹ (plot marginals), repeat (for other θ⁰ and θ¹), etc.
- ✓ When applicable, sequential (adaptive) design is a good remedy to the dependence of the optimal design in θ

DoE for nonlinear models with small data:

- \checkmark Using the small-sample properties of the estimator can be a bit tricky
- ✓ <u>Numerical simulations</u> are useful: for instance, construct a locally optimum design (at θ⁰), simulate data (for another θ¹), estimate θ (correct the bias), check closeness to θ¹ (plot marginals), repeat (for other θ⁰ and θ¹), etc.
- ✓ When applicable, sequential (adaptive) design is a good remedy to the dependence of the optimal design in θ

Thank you for your attention !

References

References I

- Bates, D., Watts, D., 1980. Relative curvature measures of nonlinearity. Journal of Royal Statistical Society B42, 1–25.
- Box, M., 1971. Bias in nonlinear estimation. Journal of Royal Statistical Society B33, 171-201.
- Chernoff, H., 1953. Locally optimal designs for estimating parameters. Annals of Math. Stat. 24, 586-602.
- Clarke, G., 1980. Moments of the least-squares estimators in a non-linear regression model. Journal of Royal Statistical Society B42, 227–237.
- Dette, H., Pepelyshev, A., 2010. Generalized latin hypercube design for computer experiments. Technometrics 52 (4), 421–429.
- Fedorov, V., 1972. Theory of Optimal Experiments. Academic Press, New York.
- Fedorov, V., Leonov, S., 2014. Optimal Design for Nonlinear Response Models. CRC Press, Boca Raton.
- Firth, D., 1993. Bias reduction of maximum likelihood estimates. Biometrika 80 (1), 27-38.
- Gauchi, J.-P., Pázman, A., 2006. Designs in nonlinear regression by stochastic minimization of functionnals of the mean square error matrix. Journal of Statistical Planning and Inference 136, 1135–1152.
- Hamilton, D., Watts, D., 1985. A quadratic design criterion for precise estimation in nonlinear regression models. Technometrics 27, 241–250.
- Hu, I., 1998. On sequential designs in nonlinear problems. Biometrika 85 (2), 496-503.
- Kiefer, J., Wolfowitz, J., 1960. The equivalence of two extremum problems. Canadian Journal of Mathematics 12, 363–366.
- Mitchell, T., 1974. An algorithm for the construction of "D-optimal" experimental designs. Technometrics 16, 203–210.
References

References II

- Pázman, A., 1986. Foundations of Optimum Experimental Design. Reidel (Kluwer group), Dordrecht (co-pub. VEDA, Bratislava).
- Pázman, A., 1993. Nonlinear Statistical Models. Kluwer, Dordrecht.
- Pázman, A., Pronzato, L., 1992. Nonlinear experimental design based on the distribution of estimators. Journal of Statistical Planning and Inference 33, 385–402.
- Pázman, A., Pronzato, L., 1996. A Dirac function method for densities of nonlinear statistics and for marginal densities in nonlinear regression. Statistics & Probability Letters 26, 159–167.
- Pázman, A., Pronzato, L., 1998. Approximate densities of two bias-corrected nonlinear LS estimators. In: Atkinson, A., Pronzato, L., Wynn, H. (Eds.), MODA'5 – Advances in Model-Oriented Data Analysis and Experimental Design, Proceedings of the 5th Int. Workshop, Marseille, 22–26 juin 1998. Physica Verlag, Heidelberg, pp. 145–152.
- Pázman, A., Pronzato, L., 2014. Optimum design accounting for the global nonlinear behavior of the model. Annals of Statistics 42 (4), 1426–1451.
- Picard, D., Prum, B., 1992. The bias of the MLE, an example of the behaviour of different corrections in genetic models. Statistics 23, 159–169.
- Pronzato, L., 2009. Asymptotic properties of nonlinear estimates in stochastic models with finite design space. Statistics & Probability Letters 79, 2307–2313.
- Pronzato, L., 2010. One-step ahead adaptive *D*-optimal design on a finite design space is asymptotically optimal. Metrika 71 (2), 219–238, (DOI: 10.1007/s00184-008-0227-y).
- Pronzato, L., Pázman, A., July 1994a. Bias correction in nonlinear regression via two-stages least-squares estimation. In: Blanke, M., Söderström, T. (Eds.), Prep. 10th IFAC/IFORS Symposium on Identification and System Parameter Estimation. Vol. 1. Danish Automation Society, Copenhagen, pp. 137–142.

References

References III

- Pronzato, L., Pázman, A., 1994b. Second-order approximation of the entropy in nonlinear least-squares estimation. Kybernetika 30 (2), 187–198, *Erratum* 32(1):104, 1996.
- Pronzato, L., Pázman, A., 2001. Using densities of estimators to compare pharmacokinetic experiments. Computers in Biology and Medicine 31 (3), 179–195.
- Pronzato, L., Pázman, A., 2013. Design of Experiments in Nonlinear Models. Asymptotic Normality, Optimality Criteria and Small-Sample Properties. Springer, LNS 212, New York.
- Pukelsheim, F., 1993. Optimal Experimental Design. Wiley, New York.

Pukelsheim, F., Reider, S., 1992. Efficient rounding of approximate designs. Biometrika 79 (4), 763-770.

Schwabe, R., 1996. Optimum Designs for Multi-Factor Models. Springer, New York.

Silvey, S., 1980. Optimal Design. Chapman & Hall, London.

- Sternmüllerová, K., 2019. Optimum design in nonlinear models. Ph.D. Thesis, Comenius University, Bratislava, Slovakia.
- Tierney, L., Kass, R., Kadane, J., 1989. Approximate marginal densities of nonlinear functions. Biometrika 76 (3), 425–433.
- Valenzuela, P., Rojas, C., Hjalmarsson, H., 2015. Uncertainty in system identification: learning from the theory of risk. IFAC-PapersOnLine 48 (28), 1053–1058.
- Vila, J.-P., 1990. Exact experimental designs via stochastic optimization for nonlinear regression models. In: Proc. Compstat, Int. Assoc. for Statistical Computing. Physica Verlag, Heidelberg, pp. 291–296.
- Vila, J.-P., Gauchi, J.-P., 2007. Optimal designs based on exact confidence regions for parameter estimation of a nonlinear regression model. Journal of Statistical Planning and Inference 137, 2935–2953.
- Welch, W., 1982. Branch-and-bound search for experimental designs based on *D*-optimality and other criteria. Technometrics 24 (1), 41–28.
- Wynn, H., 1970. The sequential generation of *D*-optimum experimental designs. Annals of Math. Stat. 41, 1655–1664.