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1 Introduction: regression models

1 Introduction

Regression model

yi = y(xi )︸ ︷︷ ︸
observation at xi

=

model response at xi︷ ︸︸ ︷
η(xi , θ̄) + εi︸︷︷︸

error

where the εi are i.i.d., with E{εi} = 0 and E{ε2i } = σ2

Xn = (x1, . . . , xn) the design

y = (y1, . . . , yn)> the vector of observations

η(θ) = (η(x1, θ), . . . , η(xn, θ))> the vector of model responses

ε = (ε1, . . . , εn)> the errors (Þ E{ε} = 0 and Var(ε) = σ2 In)

θ̄ = true value of the model parameters θ ∈ Rp

Least Squares (LS) estimator: θ̂n = arg minθ ‖y− η(θ)‖2
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1 Introduction: regression models

Information matrix (at θ0, normalised — per observation)

M(Xn, θ
0) = 1

n

n∑
i=1

∂η(xi , θ)
∂θ

∣∣
θ0

∂η(xi , θ)
∂θ>

∣∣
θ0

= 1
n
∂η>(θ)
∂θ

∣∣
θ0

∂η(θ)
∂θ>

∣∣
θ0

(a p × p matrix, with p = dim(θ))
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1 Introduction: regression models

A. Linear regression

η(x , θ) = f>(x)θ → ∂η>(θ)
∂θ = F> = (f(x1), . . . , f(xn)) and

θ̂n = (F>F)−1F>y

normalised information matrix: Mn = M(Xn) = 1
n F
>F

Þ choose the xi such that Mn has full rank

yi = f>(xi )θ̄ + εi for all i , with E{εi} = 0 and E{ε2i } = σ2

⇒ E{θ̂n} = θ̄

⇒ Var(θ̂n) = E{(θ̂n − θ̄)(θ̂n − θ̄)>} = σ2

n M−1n

Þ choose the xi to minimise a scalar function of M−1n
or maximise a function Φ(Mn) (information function (Pukelsheim, 1993))

Normal errors ε ∼ N (0, σ2 In) à θ̂n ∼ N (θ̄, σ
2

n M
−1(Xn))

Þ no particular problem with small data
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1 Introduction: regression models

B. Nonlinear regression
η(x , θ) nonlinear in θ
Under «standard» assumptions (θ ∈ Θ compact, η(x , θ) continuous in θ for any
x . . . ), for a suitable sequence (xi ),

θ̂n a.s.→ θ̄ as n→∞ (strong consistency) [but E{θ̂n} 6= θ̄ (θ̂n is biased)]

normalised information matrix at θ: Mn(θ) = M(Xn, θ) = 1
n
∑n

i=1
∂η(xi ,θ)
∂θ

∂η(xi ,θ)
∂θ>

Under «standard» regularity assumptions (η(x , θ) twice continuously differentiable
w.r.t. θ for any x . . . ), for a suitable sequence (xi ),

√
n(θ̂n − θ̄) d→ N (0, σ2M−1(θ̄)) as n→∞ (asymptotic normality)

with M(θ) = limn→∞Mn(θ)

Þ choose the xi to minimise a scalar function of M−1n (θ0),
or maximise a function Φ(Mn(θ0)), for a prior guess θ0 (local design)

= classical approach for DoE in nonlinear models
(based on asymptotic normality)
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1 Introduction: regression models

1) DoE for linear models (local design for nonlinear models, for a given θ0)
Which information function Φ?
How to construct an optimal design for Φ?

3,4,5,6) Small-sample issues
7) nonlocal DoE for nonlinear models (based on asymptotic normality)
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2 DoE for linear models

2 DoE for linear models

Design criterion Φ
A-optimality: minimise trace[M−1] ⇔ maximise Φ(M) = 1/trace[M−1]
⇔ minimise sum of lengthes2 of axes of (asymptotic) confidence ellipsoids

E -optimality: maximise Φ(M) = λmin(M)
⇔ minimise longest axis of (asymptotic) confidence ellipsoids
D-optimality: maximise Φ(M) = det1/p(M) [p = dim(θ)]
⇔ minimise volume of (asymptotic) confidence ellipsoids

(proportional to 1/
√

det(M))
Very much used:

a D-optimum design is invariant by reparameterisation

detM′(β(θ)) = detM(θ) det−2
(
∂β

∂θ>

)
often leads to repeat the same experimental conditions (replications)
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2 DoE for linear models

Construction of an optimal design

A/ Exact design
n observations at Xn = (x1, . . . , xn) in a regression model (for simplicity)
Each design point xi can be anything, e.g. a point in a subset X of Rd

Maximise Φ(Mn) w.r.t. Xn with Mn = M(Xn) = 1
n
∑n

i=1 f(xi )f>(xi )

• If n × d not too large Þ standard algorithm
[but there exist constraints (xi ∈X for all i), local optimas. . . ]

• Otherwise Þ take the particular form of the problem into account
Exchange methods: (Fedorov, 1972; Mitchell, 1974)
At iteration k, exchange one support point xj by a better one x∗ in X in the
sense of Φ(·)

Xk
n = (x1, . . . , xj

l
x∗

, . . . , xn)

• Branch and bound (Welch, 1982), rounding an optimal design measure
(Pukelsheim and Reider, 1992)
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2 DoE for linear models

B/ Design measures: approximate design theory
(Chernoff, 1953; Kiefer and Wolfowitz, 1960; Fedorov, 1972; Silvey, 1980;
Pázman, 1986; Pukelsheim, 1993; Fedorov and Leonov, 2014)

M(Xn) = 1
n
∑n

i=1 f(xi )f>(xi )
[with M(Xn) = M(Xn, θ

0) and f(xi ) = ∂η(xi ,θ)
∂θ

∣∣
θ0

in a nonlinear model]
The additive form is essential (comes from the independence of observations)

Repeat ri observations at the same xi ∈X (ri replications):
Þ only m ≤ n different xi

M(Xn) =
∑m

i=1
ri
n f(xi )f>(xi )

ri
n = proportion of observations collected at xi

= «percentage of experimental effort» at xi

= weight wi of support point xi

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 9 / 48



2 DoE for linear models

B/ Design measures: approximate design theory
(Chernoff, 1953; Kiefer and Wolfowitz, 1960; Fedorov, 1972; Silvey, 1980;
Pázman, 1986; Pukelsheim, 1993; Fedorov and Leonov, 2014)

M(Xn) = 1
n
∑n

i=1 f(xi )f>(xi )
[with M(Xn) = M(Xn, θ

0) and f(xi ) = ∂η(xi ,θ)
∂θ

∣∣
θ0

in a nonlinear model]
The additive form is essential (comes from the independence of observations)

Repeat ri observations at the same xi ∈X (ri replications):
Þ only m ≤ n different xi

M(Xn) =
∑m

i=1
ri
n f(xi )f>(xi )

ri
n = proportion of observations collected at xi

= «percentage of experimental effort» at xi

= weight wi of support point xi

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 9 / 48



2 DoE for linear models

M(Xn) =
∑m

i=1 wi f(xi )f>(xi )

Ô design Xn ⇔
{

x1 · · · xm
w1 · · · wm

}
with

∑m
i=1 wi = 1

Ô normalised discrete distribution on X , with constraints ri/n = wi

Release the constraints Þ wi ≥ 0 with
∑m

i=1 wi = 1

Ô ξ = discrete probability measure on X (= design space)
with support points xi and associated weights wi

= «approximate design»

More general expression: ξ = any probability measure on X (
∫

X ξ(dx) = 1)
M(ξ) =

∫
X f(x)f>(x) ξ(dx)

M(ξ) ∈ convex closure of the set of rank 1 matrices f(x)f>(x)
M(ξ) is symmetric p × p, belongs to a p(p+1)

2 -dimensional space
Caratheodory Theorem Þ for any ξ, there exists a discrete probability measure ξd

with p(p+1)
2 + 1 support points at most, such that M(ξd ) = M(ξ)
(true in particular for the optimum design)
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2 DoE for linear models

Maximise Φ[M(ξ)], Φ(·) concave (e.g., A, E , D-optimality) and M(ξ) linear in ξ
Þ convex programming

Usually, X is first discretised
Þ optimise a vector of weights

(possibly high dimensional, but the solution is sparse)

Typical algorithm when Φ is differentiable (A, D-optimality):
Frank-Wolfe conditional gradient (called vertex-direction algorithm in DoE), with
predefined (Wynn, 1970) or optimal (Fedorov, 1972) step-size

[but there exist more efficient methods]

More difficult if Φ not differentiable (E -optimality), but feasible
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2 DoE for linear models

Application to models with complete product-type interactions

Single factor models: ηk(x , θ(k)) , [f(k)(x)]>θ(k)

global model for d factors x = ({x}1, {x}2, . . . , {x}d )>:
η(x,γ) = [f1({x}1)⊗ · · · ⊗ fd ({x}d )]>γ

In particular, if ηk = polynomial of degree dk (dim(θ(k)) = pk = 1 + dk),
η = polynomial with total degree

∑d
k=1 dk (dim(γ) =

∏d
k=1 pk)

Example:

f>(x)γ = (θ(1)
0 + θ

(1)
1 {x}1 + θ

(1)
2 {x}21)× (θ(2)

0 + θ
(2)
1 {x}2 + θ

(2)
2 {x}22)

= γ0 + γ1{x}1 + γ2{x}2 + γ12{x}1{x}2 + γ11{x}12 + γ22{x}22

+γ112{x}12{x}2 + γ122{x}1{x}22 + γ1122{x}12{x}22

D, A and E -optimal design measure = tensor product of the d optimal design
measures (Schwabe, 1996)

(true for any complete product-type interaction model — not only
for polynomials)
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(1)
2 {x}21)× (θ(2)

0 + θ
(2)
1 {x}2 + θ

(2)
2 {x}22)

= γ0 + γ1{x}1 + γ2{x}2 + γ12{x}1{x}2 + γ11{x}12 + γ22{x}22

+γ112{x}12{x}2 + γ122{x}1{x}22 + γ1122{x}12{x}22

D, A and E -optimal design measure = tensor product of the d optimal design
measures (Schwabe, 1996)

(true for any complete product-type interaction model — not only
for polynomials)
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2 DoE for linear models

Polynomial with degree k: D-optimal design supported on k + 1 points
(on [−1, 1]: roots of (1− t2)P ′k (t), with Pk (t) , k-th de Legendre polynomial),
all with the same weight 1/(k + 1)

dimension 2, d1 = d2 = 2
ξ∗ has 9 support points, weights =1/9
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(on [−1, 1]: roots of (1− t2)P ′k (t), with Pk (t) , k-th de Legendre polynomial),
all with the same weight 1/(k + 1)

dimension 2, d1 = d2 = 3
ξ∗ has 16 support points, weights =1/16
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Polynomial with degree k: D-optimal design supported on k + 1 points
(on [−1, 1]: roots of (1− t2)P ′k (t), with Pk (t) , k-th de Legendre polynomial),
all with the same weight 1/(k + 1)

dimension 2, d1 = d2 = 4
ξ∗ has 25 support points, weights =1/25
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2 DoE for linear models

Polynomial with degree k: D-optimal design supported on k + 1 points
(on [−1, 1]: roots of (1− t2)P ′k (t), with Pk (t) , k-th de Legendre polynomial),
all with the same weight 1/(k + 1)

dimension 2, d1 = d2 = 5
ξ∗ has 36 support points, weights =1/36
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2 DoE for linear models

Application to models with intercept, no interaction

Single factor models: ηk(x , θ(k)) , θ
(k)
0 +

∑dk
i=1 θ

(k)
i f (k)

i (x)

global model for d factors: η(x,γ) = θ0 +
∑d

k=1
∑dk

i=1 θ
(k)
i f (k)

i ({x}k)

In particular, if ηk = polynomial of degree dk (dim(θ(k)) = pk = 1 + dk),
η = polynomial with total degree maxd

k dk (dim(γ) = 1 +
∑d

k=1 dk)
Example:

f>(x)γ = (θ(1)
0 + θ

(1)
1 {x}1 + θ

(1)
2 {x}21) + (θ(2)

0 + θ
(2)
1 {x}2 + θ

(2)
2 {x}22)

= γ0 + γ1{x}1 + γ2{x}2 + γ11{x}12 + γ22{x}22

D-optimal design measure = tensor product of d D-optimal measures (Schwabe,
1996)

Hardly manageable in high dimension
(d polynomials of degree k à (k + 1)d support points),

but maybe a useful message for Gaussian Process models and kriging:
Ô put more points along the boundaries than deeply inside

(Dette and Pepelyshev, 2010)
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3 Linear and nonlinear models

3 Linear and nonlinear models

Linear regression: easy

The expectation surface Sη = {η(θ) = (η(x1, θ), . . . , η(xn, θ))> : θ ∈ Rp} is flat
and linearly parameterised

M(Xn, θ) does not depend on θ
Normal errors ε ∼ N (0, σ2 In) à θ̂n ∼ N (θ̄, σ

2

n M
−1(Xn))
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3 Linear and nonlinear models

Nonlinear regression: maybe a bit tricky. . .

Sη is curved (intrinsic curvature) and nonlinearly parameterised (parametric
curvature) (Bates and Watts, 1980)

M(Xn, θ) does depend on θ

Normal errors ε ∼ N (0, σ2 In) à θ̂n ∼ ?
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3 Linear and nonlinear models

Ex: η(x, θ) = θ1{x}1 + θ31(1− {x}1) + θ2{x}2 + θ22(1− {x}2)
X = (x1, x2, x3), x1 = (0 1), x2 = (1 0), x3 = (1 1), θ ∈ [−3, 4]× [−2, 2]
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3 Linear and nonlinear models

Two major difficulties with nonlinear models:
¶ Asymptotically (n→∞) — or if σ2 small enough — all seems fine:

use linear approximation
But the distribution of θ̂n may be far from normal for small n (or for σ2 large)

à small-sample properties

· Everything is local (depends on θ): if we linearise, where do we linearise?
(choice of a nominal value θ0)

à nonlocal optimum design
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4 Small-sample properties

4 Small-sample properties
Asymptotically (n→∞) à

√
n(θ̂n − θ̄) ∼ N (0, σ2M−1(Xn, θ̄))

but what is the small sample precision?

A classification of regression models (Pázman, 1993)
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4 Small-sample properties

Ô Consider projection on the expectation surface Sη:

ä Pθ0 = orthogonal projector onto the tangent space to Sη at η(θ0):

Pθ0 = 1
n
∂η(θ)
∂θ>

∣∣
θ0
M−1(Xn, θ

0)∂η
>(θ)
∂θ

∣∣
θ0

(an n × n matrix, depends on Xn)
Bates and Watts (1980) intrinsic and parametric-effect measures of nonlinearity:

Cint(Xn, θ;u) =
‖[In − Pθ]

∑p
i,j=1 uiH�

ij(θ)uj‖
n u>M(Xn, θ)u

Cpar (Xn, θ;u) =
‖Pθ

∑p
i,j=1 uiH�

ij(θ)uj‖
n u>M(Xn, θ)u

with u ∈ Rp and H�
ij(θ) = ∂2η(θ)

∂θi∂θj

Intrinsic curvature: Cint(Xn, θ) = supu∈Rp\{0} Cint(Xn, θ;u)
Parametric curvature: Cpar (Xn, θ) = supu∈Rp\{0} Cpar (Xn, θ;u)
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4 Small-sample properties

Intrinsically linear models
ä The expectation surface Sη = {η(θ) : θ ∈ Rp} is flat (plane)

— intrinsic curvature ≡ 0
ä There exists a reparameterisation (continuously differentiable)

that makes the model linear
ä PθH�

ij(θ) = H�
ij(θ), where H�

ij(θ) = ∂2η(θ)
∂θi∂θj

Observing at p different xi only (replications) makes the model intrinsically linear
[p = dim(θ)]
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4 Small-sample properties

Parametrically linear models
ä M(Xn, θ) = constant
ä PθH�

ij(θ) = 0 — parametric curvature ≡ 0

Linear models
ä η(x , θ) = f>(x)θ + c(x)
ä the model is intrinsically and parametrically linear

Flat models
ä A reparameterisation exists that makes the information matrix constant
ä Riemannian curvature tensor Rhijk(θ) = Thjik(θ)− Thkij(θ) ≡ 0

with Thjik(θ) = [H�
hj(θ)]>[In − Pθ]H�

ik(θ)

If all parameters but one appear linearly, then the model is flat
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4 Small-sample properties

A classification of regression models (Pázman, 1993)
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4 Small-sample properties

Density of the LS estimator (we suppose ε ∼ N (0, σ2In))

Intrinsically linear models (in particular, repetitions at p points):

→ exact distribution θ̂n ∼ q(θ|θ̄) = np/2 det1/2 M(Xn,θ)
(2π)p/2 σp exp

{
− 1

2σ2 ‖η(θ)− η(θ̄)‖2
}

Ex: η(x , θ) = x θ3, θ̄ = 0, all observations at the same x 6= 0
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4 Small-sample properties

Flat models: approximate density of θ̂n

q(θ|θ̄) = det[Q(θ,θ̄)]
(2π)p/2 σp np/2 det1/2 M(Xn,θ) exp

{
− 1

2σ2 ‖Pθ[η(θ)− η(θ̄)]‖2
}

where {Q(θ, θ̄)}ij = {nM(Xn, θ)}ij + [η(θ)− η(θ̄)]>[In − Pθ]H�
ij(θ)

There exists other approximations (more complicated) for models with
Rhijk(θ) 6≡ 0 (non-flat)

à Design of experiments? (since q(θ|θ̄) depends on Xn)

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 25 / 48



4 Small-sample properties

Flat models: approximate density of θ̂n

q(θ|θ̄) = det[Q(θ,θ̄)]
(2π)p/2 σp np/2 det1/2 M(Xn,θ) exp

{
− 1

2σ2 ‖Pθ[η(θ)− η(θ̄)]‖2
}

where {Q(θ, θ̄)}ij = {nM(Xn, θ)}ij + [η(θ)− η(θ̄)]>[In − Pθ]H�
ij(θ)

There exists other approximations (more complicated) for models with
Rhijk(θ) 6≡ 0 (non-flat)

à Design of experiments? (since q(θ|θ̄) depends on Xn)

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 25 / 48



5 DOE based on small sample precision

5 DOE based on small sample precision
(P & Pázman, 2013, Chap. 6)

1) Minimise the MSE E{‖θ̂n(y)− θ̄‖2}

The approximation of Clarke (1980) requires the 4th-order derivatives of η(θ)

Þ Use the (approximate) density q(θ|θ̄)
Þ Minimise

∫
Θ ‖θ − θ̄‖

2q(θ|θ̄) dθ w.r.t. Xn using stochastic approximation

Problem: we need to force θ to remain in Θ
Þ the integral can be made equal to 0

Solution: approximate the density q̃w (θ|θ̄) of a penalised LS estimator θ̃n

θ̃n = arg minθ
{
‖y− η(θ)‖2 + 2w(θ)

}
where w(θ) forces θ to remain in Θ [w(θ) = +∞ outside Θ]

Þ Minimise
∫

Θ ‖θ − θ̄‖
2q̃w (θ|θ̄) dθ w.r.t. Xn

[also covers the case of max. a posteriori estimation (relate w(θ) to the prior on θ)]
(P & Pázman, 1992; Pázman and Gauchi, 2006)
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5 DOE based on small sample precision

2) Use a small-sample variant of D-optimal design
A D-optimal design minimises

(i) the volume of asymptotic (ellipsoidal) confidence regions
(ii) the (Shannon) entropy of the asymptotic distribution of θ̂n

Hamilton and Watts (1985) minimize the (approximate) volume V (Xn, θ
0) of

(approximate) confidence regions (V (Xn, θ
0) has an explicit form and a

geometrical interpretation)

Vila (1990); Vila and Gauchi (2007) minimize the expected volume of exact
confidence regions (not ellipsoidal, not necessarily of minimum volume), using
stochastic approximation
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5 DOE based on small sample precision

Þ Choose Xn that minimises the approximate entropy of the approximate
distribution of θ̂n (P & Pázman, 1994b)

Minimise Ent[q(·|θ̄)] = −
∫
Rn log[q(θ̂n(y)|θ̄)]ϕ(y|Xn, θ̄) dy w.r.t. Xn

where ϕ(y|Xn, θ̄) corresponds to y ∼ N (η(θ̄), σ2In)

Use a 2nd order Taylor development of log[q(θ̂n(y)|θ̄)] around y = η(θ̄):

Ent[q(·|θ̄)] = − log q(θ̄|θ̄)− σ2

2

N∑
i=1

∂2 log q[θ̂(y)|θ̄]
∂y2

i

∣∣∣∣
η(θ̄)

+O(σ4)
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5 DOE based on small sample precision

After some (lengthy) calculations. . .

Ent[q(·|θ̄)] =

entropy of asymptotic normal distribution︷ ︸︸ ︷
p
2 [1 + log(2πσ2)]− 1

2 log det[nM(Xn, θ̄)]

− σ2

2n

p∑
h,i,j,k=1

(
{M−1(Xn, θ̄)}ij

[
1
n {M

−1(Xn, θ̄)}kh[Rkjhi (θ̄) + Uh
kij(θ̄)]

− Gh
ki (θ̄) Gk

hj(θ̄)− Gk
kh(θ̄) Gh

ij (θ̄)
])

+O(σ4)

where Uh
kij(θ) = ∂3η>(θ)

∂θk∂θi∂θj

∂η(θ)
∂θh

Gk
ij (θ) = 1

n

p∑
h=1

∂η>(θ)
∂θh

H�
ij {M−1(Xn, θ̄)}hk

with Rhijk(θ) = Thjik(θ)− Thkij(θ), Thjik(θ) = [H�
hj(θ)]>[In − Pθ]H�

ik(θ) and
H�

ij(θ) = ∂2η(θ)
∂θi∂θj
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5 DOE based on small sample precision

3) Related work using the approximate density q(θ|θ̄)

3a) (approximate) marginal densities of θ̂n (Pázman & P, 1996)

Denote γ = h(θ) [with γ = θi for some i ∈ {1, . . . , p = dim(θ)} as particular case]

q(γ|θ̄) = 1√
2πσ‖bγ‖

exp
{
− 1

2σ2 ‖Pγ [η(θγ)− η(θ̄)]‖2
}

where

θγ = arg min
θ:h(θ)=γ

‖η(θ)− η(θ̄)‖2

bγ = 1
n
∂η(θ)
∂θ>

∣∣
θγ
M−1(Xn, θγ) ∂h(θ)

∂θ

∣∣∣∣
θγ

Pγ =
bγb>γ
‖bγ‖2

[There also exist more precise approximations, more complicated;
the difficulty compared to (Tierney et al., 1989) is that θ̂n(y) is not known explicitly]
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5 DOE based on small sample precision

Þ Can be used to compare experiments

Ex: a two-compartment model in pharmacokinetics (P & Pázman, 2001)
Observe y(t) = xC (t)/V + ε(t) where xC (t) evolves according to{

dxC (t)
dt = (−KEL− KCP)xC (t) + KPC xP(t) + u(t)

dxP (t)
dt = KCPxC (t) − KPC xP(t)

errors ε(ti ) i.i.d. N (0, σ2)

Ô 4 unknown parameters θ = (KCP ,KPC ,KEL,V )>

Compare 2 designs (8 observation times each) using simulated experiments with a
given true θ̄
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5 DOE based on small sample precision

K̂EL [K̄EL = 0.0242]
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5 DOE based on small sample precision

K̂CP [K̄CP = 0.066]
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5 DOE based on small sample precision

3b) Bias correction for LS estimation in nonlinear regression

b(θ̄) = bias of θ̂n = EXn,θ̄
{θ̂n(y)} − θ̄

= − σ2

2n2 M
−1(Xn, θ̄) ∂η

>(θ)
∂θ

∣∣
θ̄

p∑
i,j=1

H�
ij(θ̄) {M−1(Xn, θ̄)}ij︸ ︷︷ ︸

= b̃(θ̄) (Box, 1971)

+O(σ4)

We can write θ̂n = b(θ̄) + θ̄ + ω, with EXn,θ̄
{ω} = 0

Two-stage LS: solve θ̂n = b(θ) + θ for θ Þ θ̂n,∗

[θ̂n,∗ unbiased when b(θ) = Aθ + c for all θ with Ip + A nonsingular]
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5 DOE based on small sample precision

1st method: θ̂n,0 = θ̂n given, then

θ̂n,1 = θ̂n − b(θ̂n,0)
[. . . sometimes more biased than θ̂n (Picard and Prum, 1992)]

θ̂n,2 = θ̂n − b(θ̂n,1)
... =

...
θ̂n,∗ = θ̂n,∞ = θ̂n − b(θ̂n,∞)

that is, θ̂n,∗ + b(θ̂n,∗) = θ̂n, or
EXn,θ̂n,∗{θ̂n(y)} =

∫
Rn θ̂

n(y)ϕ(y|Xn, θ̂
n,∗) dy = θ̂n

Solve for θ̂n,∗ using stochastic approximation (P & Pázman, 1994a)
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5 DOE based on small sample precision

2nd method (approximate): use b̃ instead of b

Solve for θ̃n,∗: θ̃n,∗ + b̃(θ̃n,∗) = θ̂n

that is

θ̃n,∗ − σ2

2n2 M
−1(Xn, θ̃

n,∗) ∂η
>(θ)
∂θ

∣∣
θ̃n,∗

p∑
i,j=1

H�
ij(θ̃n,∗) {M−1(Xn, θ̃

n,∗)}ij = θ̂n

[Different from the score-corrected estimator θ̂n
sc of (Firth, 1993):

Þ solve ∂η>(θ)
∂θ

[y− η(θ)]−M(Xn, θ)b̃(θ) = 0 for θ]

(Pázman & P, 1998) gives the (approximate) joint and marginal densities of θ̃n,∗ and θ̂n
sc
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6 Extended optimality criteria

6 Extended optimality criteria
(P & Pázman, 2013, Chap. 7)
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Sη may overlap, there may be local minimisers for the LS problem. . .
Important and difficult problem, often neglected
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6 Extended optimality criteria

What can we do at the design stage?

à extensions of usual optimality criteria

Ô Avoid situations where ‖η(θ)− η(θ̄)‖ can be small when ‖θ − θ̄‖ is large:

maximise φeE (Xn, θ
0) = min

θ

‖η(θ)− η(θ0)‖2
‖θ − θ0‖2

corresponds to E -optimal design (⇔ maximise λmin[M(Xn)]) when η is linear

Extensions of E -, G- and c-optimal design in (Pázman & P, 2014)

Extensions to generalised regression models and other design criteria in the Ph.D. thesis
(Sternmüllerová, 2019)
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7 Nonlocal DoE for nonlinear models

7 Nonlocal DoE for nonlinear models
(P & Pázman, 2013, Chap. 8)

Nonlinear regression

Nonlinear model à everything is local

φ(·) an information criterion, to be maximised with respect to the design Xn:
φ(Xn) = φ(Xn, θ), but which θ?
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7 Nonlocal DoE for nonlinear models

Local optimum design: based on a nominal value θ0 Þ maximize φ(Xn, θ
0)

[concerns all methods considered so far,
based on asymptotic normality (AN) or small-sample properties]

Objective of nonlocal DoE: remove the dependence in θ0
3 main classes, essentially for φ(ξ, θ) = Φ[M(Xn, θ)] (based on AN)

¶ Average optimum design: maximise Eθ{φ(Xn, θ)} (or Eθ{φ(ξ, θ)})
· Maximin optimum design: maximise minθ{φ(Xn, θ)} (or minθ{φ(ξ, θ)})
à Between ¶ and ·: regularised maximin criteria, quantiles and probability level
criteria
¸ Sequential design
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7 Nonlocal DoE for nonlinear models

¶ Average Optimum design
Probability measure µ(dθ) on Θ ⊆ Rp (6= Bayesian estimation)

φ(·, θ0)→ φA(·) =
∫

Θφ(·, θ)µ(dθ)
[No difficulty if Θ is finite and µ =

∑M
i=1 αiδ

(i)
θ (integral → finite sum);

otherwise, use stochastic approximation to avoid evaluations of integrals]

φA(ξ) is concave in ξ when each φ(ξ, θ) is concave
à same properties and same algorithms as for local design

· Maximin Optimum design

φ(·, θ0)→ φM(·) = minθ∈Θφ(·, θ)

φM(ξ) is concave in ξ when each φ(ξ, θ) is concave, but φM(·) is non-differentiable

Problems
¶ Optimal design for φA(·) not invariant by a monotone transformation of φ(·, θ)
· Optimal design for φM(·) very sensitive to the choice of the boundary of Θ
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7 Nonlocal DoE for nonlinear models

Between ¶ and ·: quantiles and probability level criteria
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;θ
)

Þ maximise Pu for a given u, or maximise Qα for a given α
(when α→ 0, tends to maximin optimality)
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7 Nonlocal DoE for nonlinear models

Directional derivatives, algorithms . . . but the criteria are not concave:
Þ no guarantee of successful maximisation

A related very promising approach: maximise the conditional value at risk
(or superquantile) as proposed by Valenzuela et al. (2015)

φα(Xn) = max
t∈R

{
t + 1

α

∫
Θ

min [0, φ(Xn; θ)− t] µ(dθ)
}

When µ has a density (w.r.t. Lebesgue measure on Θ) then

φα(Xn) = 1
α

∫
{θ:φ(Xn ;θ)<Qα(Xn)}

φ(Xn; θ)µ(dθ)

φ(ξ, θ) concave in ξ ⇒ φα(ξ) concave
φ1(Xn) = φA(Xn) and φα(Xn)→ φM(Xn) as α→ 0

[part of the Ph.D. thesis (Sternmüllerová, 2019)]
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α

∫
{θ:φ(Xn ;θ)<Qα(Xn)}

φ(Xn; θ)µ(dθ)

φ(ξ, θ) concave in ξ ⇒ φα(ξ) concave
φ1(Xn) = φA(Xn) and φα(Xn)→ φM(Xn) as α→ 0

[part of the Ph.D. thesis (Sternmüllerová, 2019)]
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7 Nonlocal DoE for nonlinear models

¸ Sequential design
θ0 → design: X1 = arg maxX φ(X, θ0)
→ observe: y1 = y1(X1)
→ estimate: θ̂1 = arg minθ LS(θ; y1,X1)
→ design: X2 = arg maxX φ({X1,X}, θ̂1)
→ observe: y2 = y2(X2)
→ estimate: θ̂2 = arg minθ LS(θ; { y1, y2︸ ︷︷ ︸

growing

}, {X1,X2︸ ︷︷ ︸
growing

})

→ design: X3 = arg maxX φ({X1,X2,X}, θ̂2)
. . . etc.

Þ Replace unknown θ by best current guess θ̂k

(there exist variants with Bayesian estimation and average optimality)

Consistency of θ̂n? Asymptotic normality (for designs based on M)?
(difficulty: Xk depends on y1, . . . , yk−1 =⇒ independence is lost)
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7 Nonlocal DoE for nonlinear models

Each Xi has size q

à No big difficulty if q ≥ p = dim(θ) (batch sequential design)

If n observation in total, two stages only: size of first batch?
→ should be proportional to

√
n (which does not say much . . . )

à Full sequential design: Xk = {xk} (q = 1)
→ convergence properties are difficult to investigate. . .

When

M(Xk+1, θ̂
k) = k

k + 1 M(Xk , θ̂
k) + 1

k + 1
∂η(xk+1, θ)

∂θ

∣∣
θ̂k

∂η(xk+1, θ)
∂θ>

∣∣
θ̂k

with xk+1 = arg maxX Fφ(ξk ; δx |θ̂k)︸ ︷︷ ︸
directional derivative

⇔
conditional gradient algorithm
with step-size 1

k+1 (Wynn, 1970)

ä some CV results for Bayesian estimation (Hu, 1998)
ä no general CV results for LS and ML estimation,

[unless X = {x (1), . . . , x (`)} finite (P 2009, 2010)]
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8 Conclusions

8 Conclusions

DoE for nonlinear models with small data:
3 Using the small-sample properties of the estimator can be a bit

tricky

3 Numerical simulations are useful: for instance,
construct a locally optimum design (at θ0),
simulate data (for another θ1),

estimate θ (correct the bias),
check closeness to θ1 (plot marginals),
repeat (for other θ0 and θ1), etc.

3 When applicable, sequential (adaptive) design is a good remedy to
the dependence of the optimal design in θ

Thank you for your attention !

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 45 / 48



8 Conclusions

8 Conclusions

DoE for nonlinear models with small data:
3 Using the small-sample properties of the estimator can be a bit

tricky
3 Numerical simulations are useful: for instance,

construct a locally optimum design (at θ0),
simulate data (for another θ1),

estimate θ (correct the bias),
check closeness to θ1 (plot marginals),
repeat (for other θ0 and θ1), etc.

3 When applicable, sequential (adaptive) design is a good remedy to
the dependence of the optimal design in θ

Thank you for your attention !

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 45 / 48



8 Conclusions

8 Conclusions

DoE for nonlinear models with small data:
3 Using the small-sample properties of the estimator can be a bit

tricky
3 Numerical simulations are useful: for instance,

construct a locally optimum design (at θ0),
simulate data (for another θ1),

estimate θ (correct the bias),
check closeness to θ1 (plot marginals),
repeat (for other θ0 and θ1), etc.

3 When applicable, sequential (adaptive) design is a good remedy to
the dependence of the optimal design in θ

Thank you for your attention !

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 45 / 48



8 Conclusions

8 Conclusions

DoE for nonlinear models with small data:
3 Using the small-sample properties of the estimator can be a bit

tricky
3 Numerical simulations are useful: for instance,

construct a locally optimum design (at θ0),
simulate data (for another θ1),

estimate θ (correct the bias),
check closeness to θ1 (plot marginals),
repeat (for other θ0 and θ1), etc.

3 When applicable, sequential (adaptive) design is a good remedy to
the dependence of the optimal design in θ

Thank you for your attention !

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 45 / 48



References

References I

Bates, D., Watts, D., 1980. Relative curvature measures of nonlinearity. Journal of Royal Statistical Society
B42, 1–25.

Box, M., 1971. Bias in nonlinear estimation. Journal of Royal Statistical Society B33, 171–201.
Chernoff, H., 1953. Locally optimal designs for estimating parameters. Annals of Math. Stat. 24, 586–602.
Clarke, G., 1980. Moments of the least-squares estimators in a non-linear regression model. Journal of Royal

Statistical Society B42, 227–237.
Dette, H., Pepelyshev, A., 2010. Generalized latin hypercube design for computer experiments. Technometrics

52 (4), 421–429.
Fedorov, V., 1972. Theory of Optimal Experiments. Academic Press, New York.
Fedorov, V., Leonov, S., 2014. Optimal Design for Nonlinear Response Models. CRC Press, Boca Raton.
Firth, D., 1993. Bias reduction of maximum likelihood estimates. Biometrika 80 (1), 27–38.
Gauchi, J.-P., Pázman, A., 2006. Designs in nonlinear regression by stochastic minimization of functionnals of

the mean square error matrix. Journal of Statistical Planning and Inference 136, 1135–1152.
Hamilton, D., Watts, D., 1985. A quadratic design criterion for precise estimation in nonlinear regression

models. Technometrics 27, 241–250.
Hu, I., 1998. On sequential designs in nonlinear problems. Biometrika 85 (2), 496–503.
Kiefer, J., Wolfowitz, J., 1960. The equivalence of two extremum problems. Canadian Journal of Mathematics

12, 363–366.
Mitchell, T., 1974. An algorithm for the construction of “D-optimal” experimental designs. Technometrics 16,

203–210.

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 46 / 48



References

References II

Pázman, A., 1986. Foundations of Optimum Experimental Design. Reidel (Kluwer group), Dordrecht (co-pub.
VEDA, Bratislava).

Pázman, A., 1993. Nonlinear Statistical Models. Kluwer, Dordrecht.
Pázman, A., Pronzato, L., 1992. Nonlinear experimental design based on the distribution of estimators.

Journal of Statistical Planning and Inference 33, 385–402.
Pázman, A., Pronzato, L., 1996. A Dirac function method for densities of nonlinear statistics and for marginal

densities in nonlinear regression. Statistics & Probability Letters 26, 159–167.
Pázman, A., Pronzato, L., 1998. Approximate densities of two bias–corrected nonlinear LS estimators. In:

Atkinson, A., Pronzato, L., Wynn, H. (Eds.), MODA’5 – Advances in Model–Oriented Data Analysis and
Experimental Design, Proceedings of the 5th Int. Workshop, Marseille, 22–26 juin 1998. Physica Verlag,
Heidelberg, pp. 145–152.

Pázman, A., Pronzato, L., 2014. Optimum design accounting for the global nonlinear behavior of the model.
Annals of Statistics 42 (4), 1426–1451.

Picard, D., Prum, B., 1992. The bias of the MLE, an example of the behaviour of different corrections in
genetic models. Statistics 23, 159–169.

Pronzato, L., 2009. Asymptotic properties of nonlinear estimates in stochastic models with finite design space.
Statistics & Probability Letters 79, 2307–2313.

Pronzato, L., 2010. One-step ahead adaptive D-optimal design on a finite design space is asymptotically
optimal. Metrika 71 (2), 219–238, ( DOI: 10.1007/s00184-008-0227-y).

Pronzato, L., Pázman, A., July 1994a. Bias correction in nonlinear regression via two-stages least-squares
estimation. In: Blanke, M., Söderström, T. (Eds.), Prep. 10th IFAC/IFORS Symposium on Identification
and System Parameter Estimation. Vol. 1. Danish Automation Society, Copenhagen, pp. 137–142.

Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 47 / 48



References

References III

Pronzato, L., Pázman, A., 1994b. Second-order approximation of the entropy in nonlinear least-squares
estimation. Kybernetika 30 (2), 187–198, Erratum 32(1):104, 1996.

Pronzato, L., Pázman, A., 2001. Using densities of estimators to compare pharmacokinetic experiments.
Computers in Biology and Medicine 31 (3), 179–195.

Pronzato, L., Pázman, A., 2013. Design of Experiments in Nonlinear Models. Asymptotic Normality,
Optimality Criteria and Small-Sample Properties. Springer, LNS 212, New York.

Pukelsheim, F., 1993. Optimal Experimental Design. Wiley, New York.
Pukelsheim, F., Reider, S., 1992. Efficient rounding of approximate designs. Biometrika 79 (4), 763–770.
Schwabe, R., 1996. Optimum Designs for Multi-Factor Models. Springer, New York.
Silvey, S., 1980. Optimal Design. Chapman & Hall, London.
Sternmüllerová, K., 2019. Optimum design in nonlinear models. Ph.D. Thesis, Comenius University, Bratislava,

Slovakia.
Tierney, L., Kass, R., Kadane, J., 1989. Approximate marginal densities of nonlinear functions. Biometrika

76 (3), 425–433.
Valenzuela, P., Rojas, C., Hjalmarsson, H., 2015. Uncertainty in system identification: learning from the theory

of risk. IFAC-PapersOnLine 48 (28), 1053–1058.
Vila, J.-P., 1990. Exact experimental designs via stochastic optimization for nonlinear regression models. In:

Proc. Compstat, Int. Assoc. for Statistical Computing. Physica Verlag, Heidelberg, pp. 291–296.
Vila, J.-P., Gauchi, J.-P., 2007. Optimal designs based on exact confidence regions for parameter estimation of

a nonlinear regression model. Journal of Statistical Planning and Inference 137, 2935–2953.
Welch, W., 1982. Branch-and-bound search for experimental designs based on D-optimality and other criteria.

Technometrics 24 (1), 41–28.
Wynn, H., 1970. The sequential generation of D-optimum experimental designs. Annals of Math. Stat. 41,

1655–1664.
Luc Pronzato (CNRS) Experimental design in nonlinear models Small Data, Paris, 13/05/2019 48 / 48


	Introduction: regression models
	DoE for linear models
	Linear and nonlinear models
	Small-sample properties
	DOE based on small sample precision
	Extended optimality criteria
	Nonlocal DoE for nonlinear models
	Conclusions
	References

