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Context

Accidents leading to unplanned exposure of humans to ionizing radiation
(IR) have occurred many times

overexposure in radiotherapy services or occupational settings
large-scale nuclear accidents

Unclear radiation exposure scenarios and/or inconsistent findings
workers at risk of exposure may not wear their obligatory personal dosimeter
workers at risk of exposure may not store it correctly after use.

Estimation of the absorbed radiation dose received by an exposed or
suspected exposed individual may be crucial to:

Optimize patient-centered care
Predict the derived health consequences for both early and late effects
Perform rapid triage of exposed versus non-exposed persons
Clarify unclear radiation exposure scenarios
Appease the ”worried well” persons

Dose assessment ⇒ Proof of exposure by court and professional associations
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Biological retrospective dosimetry

It offers the only possibility to estimate the individual absorbed dose
even weeks or months after a potential exposure (Kulka et al. (2018)).
when a direct measurement of IR exposure is not or no longer possible

Main goal

Estimation of the individual absorbed radiation dose from microscope counting
of radiation-related chromosomal anomalies

Radiation exposure causes chromosomal DeoxyriboNucleic Acid (DNA)
lesions like double-stand breaks

The broken fragments may repair incorrectly ⇒ Chromosome aberrations
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The dicentric chromosome assay (DCA)

Dicentrics have a low naturally occurring background frequency

Frequencies of dicentrics increase with the absorbed dose
⇒ Well-established and highly specific biological marker of radiation
exposure

Scoring dicentrics in peripheral human blood lymphocytes : ”gold
standard” biological method for retrospective dose estimation (IAEAb
(2011)).
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Main questions

Given the number of dicentrics per cell observed in blood lymphocytes:

Question Q1

Can it be stated that a strictly positive radiation dose has been received by :

1 all of the analyzed cells (whole-body irradiation)?

2 only a fraction of the analyzed cells (partial irradiation)?

3 none of the analyzed cells ? (Relevant for unclear exposure scenarios)

Question Q2

What is the estimated absorbed dose and the uncertainty associated to this
estimation?
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4 real radiation accident victims (2006-2013)
In-vivo data provided by IRSN/LRAcc
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8 suspected exposed individuals (2006-2013)
In-vivo data provided by IRSN/LRAcc
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Calibration data (Cobalt 60) - In-vitro data provided by IRSN/LRAcc

In-vitro irradiation of blood samples - various healthy donors - different doses
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Dose-response model MA for in-vivo data
Exposed and suspected exposed individuals

Let’s consider a given individual with n0 analyzed cells:

D0 : Unknown absorbed dose (in Gray) received by each cell

Rk : Number of dicentrics observed in each cell k (k = 1, . . . , n0)

In case of LOW-LET radiation and homogeneous irradiation

(MA) Rk ∼i.i.d Poisson(λ0)

λ0 = A + αD0 + βD2
0

θ = (A, α, β): unknown parameters with A > 0, β > 0, α > −2
√
Aβ

A: background expected number of dicentrics per cell at dose D0 = 0

Y0 =
∑n0

k=1 Rk ∼ Poisson(n0λ0)

Non-identifiable model ⇒ External data required to estimate θ = (A, α, β)
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Dose-response model MC for calibration data

Let’s consider a given experimental (in-vitro) irradiation i ∈ {1, . . . , I}
Di : Fixed absorbed dose (in Gray) received by each cell

Zi,l : Number of dicentrics observed in each cell l ∈ {1, . . . , ni} at dose Di

In case of LOW-LET radiation and homogeneous irradiation

At a given dose Di :

(MC ) Zi,l ∼i.i.d Poisson(λi )

λi = A + αDi + βD2
i

⇒ Yi =
∑ni

l=1 Zi,l ∼ Poisson(niλi )

where Yi is the total number of dicentrics observed at dose Di and ni the total
number of analyzed cells
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Answering Q2 - Estimation of the dose

Fit MC to calibration data using maximum likelihood estimation

Plug θ̂ = (Â, α̂, β̂) into MA
Derive point estimate D̂0 of the absorbed dose D0 (inverse regression)

D̂0 = g(Â, α̂, β̂) =
−α̂ +

√
α̂2 + 4β̂(λ̂0 − Â)

2β̂

where λ̂0 = Y0
n0
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Answering Q2 - Estimation of the dose

Potential drawbacks:

If λ̂0 = Y0
n0

= 0 then D̂0 < 0 (Context: Small signal in the data)

Prior information on the dose not accounted for

Modular approach : Disjoint estimation of θ and D0
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Answering Q2 - Derive a 95% confidence interval on D̂0

Approach 1: Multivariate delta-method
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⇒ Asymptotical 95% confidence interval on dose estimate: D̂0 ± 1.96σ̂D0

Approach 2: Bootstrap

Potential drawbacks:

Is the asymptotic assumption correct?

Bootstrap ⇒ Strong data redundancy if small signal in data

Uncertainty on the dose estimation may depend on the statistical method
used to compute the confidence interval
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Answering Q1 - Strictly positive absorbed dose received?

Hypothesis testing: H0 : D0 = 0 vs H1 : D0 = d1 (with d1 > 0)

Test statistic: Y0 =
∑n0

k=1 Rk

Under H0, Y0 ∼ Poisson(n0A)

Critical region: [y∗0 ,+∞] with y∗0 = 0.95 quantile of Poisson(n0Â)
y∗0 is called ”Decision threshold”

If y obs
0 > y∗0 , H0 is rejected with error (of the first kind) = 0.05

Statistical power: 1− FrdH1 (y∗0 ) where FrdH1 cumulative distribution

function of a Poisson distribution with intensity = n0(Â + α̂d1 + β̂d2
1 )

Detection Limit: The smallest value of dose d1 from which the statistical
power of the test is greater or equal to 0.95
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Answering Q1 - Strictly positive absorbed dose received?
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Answering Q1 - Strictly positive absorbed dose received?

DL = Detection Limit

Potential drawbacks:

Binary answer to Q1: Rejection of H0 or not

D0 is unknown ! : Statistical power?

The statistical power may be very small for small doses D0...

Uncertainty on the estimation of the background expected number of
dicentrics per cell A not accounted for

Does not allow to test if only a fraction of the analyzed cells have
received a strictly positive radiation dose
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Aim of the work

Can Bayesian statistical methods offer relevant alternative answers to
questions Q1 and Q2 in biological retrospective dosimetry ?

To account for expert knowledge when assigning a prior distribution on
the unknown absorbed dose D0

To propose a unique, flexible and coherent framework allowing to
simultaneously answer to questions Q1 and Q2
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Which model?

Approach 1: the one previously described....
Directed Acyclic Graph of the full model (MA + MC )

θ = (A, α, β): shared parameters

Possibility for the in-vivo data to be accounted for when fitting A, α, β

The Bayesian framework allows fitting this model in one step
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The prior distributions

A ∼ Unif [0,+∞[

α ∼ Unif [−2
√
Aβ,+∞[

β ∼ Unif [0,+∞[

Prior probability distribution on D0

D0 ∼ Unif (0, 10) ⇒ Vague prior
D0 ∼ Gamma(a, b) ⇒ Informative prior
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Using expert knowledge to define an informative Gamma prior D0

Hyperparameters a and b of the Gamma prior may be fixed by expert
knowledge given the accident scenario

For individuals for which no clinical sign was observed: D0 ∼ Unif (0, 2)
⇒ Not enough informative ! To improve!
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Using expert knowledge to define an informative Gamma prior on D0
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Answering Q2 - Bayesian estimation of the dose

MCMC algorithm - Package R ”rjags”

GUM= Multivariate Delta-Method
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Answering Q2 - Bayesian estimation of the dose
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BUT...

Given the prior distribution assigned to D0, we are assuming that D0 > 0

⇒ Is this assumption relevant for all the considered individuals?
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Answering Q1 and Q2 under the Bayesian framework

Question Q1

Can it be stated that a strictly positive radiation dose has been received by :

1 all of the analyzed cells (whole-body irradiation)?

2 only a fraction of the analyzed cells (partial irradiation)?

3 none of the analyzed cells ? (Relevant for unclear exposure scenarios)

The above sub-questions 1 and 3 can be formalized as :

A Bayesian model selection problem

M0 : Rk ∼i.i.d Poisson(A) vs MA : Rk ∼i.i.d Poisson(A+αD0 + βD2
0 )

given in-vivo data and calibration data following model MC (D0 > 0)
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Answering Q1 and Q2 under the Bayesian framework
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Answering Q1 and Q2 under the Bayesian framework

⇒ A Bayes factor (Jeffreys, 1939) can be efficiently approximated (e.g.,
Monte-Carlo estimate)

But what about sub-question 2 about partial irradiation?
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Idea: using a mixture model (Kamary et al. (2014) - arXiv)

Let’s consider a given individual - potentially exposed - with n0 analyzed cells:

p0: unknown probability for each cell to have received a dose > 0

D0 : unknown absorbed dose (in Gray) received by each irradiated cell

A mixture model for in-vivo data
(LOW LET + homogeneous irradiation)

Mmix : Rk ∼i.i.d (1− p0)Poisson(A) + p0Poisson(A + αD0 + βD2
0 )

D0 > 0 and p0 ∈ [0, 1]

θ = (A, α, β): unknown parameters with A > 0, β > 0, α > −2
√
Aβ

A: common parameter shared by both mixture components

p0 can also be interpreted as the proportion of irradiated cells

D0 and p0 assumed to be identical for each irradiated cell

M0 and MA are very special cases of the mixture model
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Directed Acyclic Graph of the full model (Mmix + MC )

θ = (A, α, β): shared parameters

The Bayesian framework allows fitting this model in one step
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Answering to Q1 and Q2 with Mmix (1/2)

If p0 = 0, model M0 is selected given the available count data
⇒ Response to Q1 is NO= ”There is no evidence that a strictly positive
radiation dose has been received”.

If p0 = 1, model MA is selected given the available count data
⇒ Response to Q1 is YES= ”A strictly positive radiation dose has been
received by all the analyzed cells”.

If p0 ∈]0, 1[, neither model M0 nor model MA is selected given the
available count data

⇒ Response to Q1 is YES= ”A strictly positive radiation dose has been
received BUT only by a fraction of the analyzed cells” (partial body
exposure).
The fraction of the body irradiated is defined as (IAEA report 2001):

F0 =
p0 × exp(D0/D̃)

(1− p0) + p0 × exp(D0/D̃)
D̃ ∼ Unif (2.7, 3.5)
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Answering to Q1 and Q2 with Mmix (2/2)

Posterior distribution on p0 ⇒ Probabilistic answer to Q1

⇒ Decision criterion to define the range of acceptance, rejection and
indecision conclusions

Let’s c1, c2, U be fixed decision thresholds (to calibrate by simulation)

Compute π1 = P(p0 > c1|Yi ,Rk) and π2 = P(p0 < c2|Yi ,Rk)
If π1 > U ⇒ YES= ”There is strong evidence that a strictly positive
radiation dose has been received by all of the analyzed cells”.
If π2 > U ⇒ NO= ”There is no evidence that a strictly positive radiation
dose has been received”.
Else YES= ”A strictly positive radiation dose has been received BUT only
by a fraction of the analyzed cells” (partial body exposure).
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The prior distributions

A ∼ Unif [0,+∞[

α ∼ Unif [−2
√
Aβ,+∞[

β ∼ Unif [0,+∞[

D0 ∼ Gamma(a, b) or D0 ∼ Unif (0, 10)

p0 ∼ Beta(c, d)

Hyperparameters a,b,c,d may be fixed by expert knowledge given the
accident scenario

Default choice (Rousseau and Mengersen (2011)): c=0.5,d=0.5
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Bayesian inference

Adaptive Metropolis-Hastings algorithm

Block updating for (A, α, β) using a Gaussian random walk (20%
acceptation rate)

Gaussian random walk for D0 (40% acceptation rate)

For the mixture weight p0:
Iteration t: Independent proposal ⇒ pcand0 ∼ Beta(0.5, 0.5)

Iteration t+1: Random walk ⇒ pcand0 ∼ Beta(1 + pt0, 2− pt0)
40% acceptation rate

Implemented in Python (2.7.10) (100000 iterations = 30 seconds)

Asymptotic consistency of the proposed mixture testing procedure

Proved by Kamary et al. (2014) in the specific case of embedded mixture
components

”If one model is indeed correct, the posterior medians of the corresponding
weight in the mixture settles very quickly near the boundary values of 1 as
the sample size increases”
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Remark

Equivalent formulation of Mmix pointing out the latent allocation variables

Mmix : Rk ∼i Poisson(λk) with λk = A + αD0k + βD2
0k

D0k = γk × D0 with γk ∼ Bern(p0)

Easy implementation in WinBUGS or JAGS but inefficient Gibbs sampler!!!
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Convergence diagnostics on the weight p0

Gibbs sampler (Left) vs Adaptive Metropolis-Hastings (Right)
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Posterior statistics, Bayes factor and posterior probability of M1
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Comparison of dose estimations

Posterior medians + 95% credible intervals
ISO2014 = Multivariate Delta Method
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Comparing prior and posterior probability distributions on p0

Prior probability distribution on p0 : Beta(0.5,0.5)

From left to right : Victims 06-11 (Estimated dose: 4.61 Gy), 08-03
(Estimated dose: 0.32Gy), 05-03 (Estimated dose: 0.13Gy)

Weak influence of the prior choice on D0 (results not shown)

Lack of information in the data to infer p0 especially when dose is small
⇒ More data needed to infer p0 (and then answer Q1)?
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Sensitivity to the prior choice on p0

Informative Beta priors defined from expert knowledge

Jeffrey’s prior Beta(0.5,0.5)

Posterior distribution on the dose D0 Posterior distribution on the weight p0

⇒ Sensitivity is clearly present but should naturally vanish as the number
of analyzed blood lymphocytes increases
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Conclusions

First fully Bayesian approach proposed to simultaneously answer to two
main questions of interest in biological retrospective dosimetry

⇒ New insights to the European Radiation Dosimetry (EURADOS)
Working Group 10, task 10.6

Using the proposed mixture model Mmix allows to get rich probabilistic
answers to questions Q1 and Q2

⇒ Relevant input data for decision-making in the contexts of clinical
management of patients, rapid triage after large-scale radiation incident,
reassuring the ’worried-well’...

In case of low suspected dose, the number of analyzed blood lymphocytes
should be higher to obtain more precise answers to question Q1
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Perspectives

Simulation studies to validate the whole methodology and calibrate the
decision thresholds (c1,c2,U)

Validate the whole methodology from new experimental data for which D0

and p0 are known

Bayesian optimal design to define the number of analyzed cells n0 required
to optimally answer to question Q1 and Q2 under budget constraint

Extend the proposed approach to other chromosome aberrations

Provide operational tools to dosimetrists
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