Data

Bayesian contributions to radiation dose estimation in biological retrospective dosimetry.

Sophie Ancelet¹, Gaëtan Gruel², Eric Grégoire², Aurélie Vaurijoux², Laurence Roy ³, Joan Francesco Barquinero Estruch ⁴

> ¹IRSN, PSE-SANTE/SESANE/LEPID, France (sophie.ancelet@irsn.fr) ²IRSN, PSE-SANTE/SERAMED/LRAcc, France ³IRSN, PSE-SANTE/SESANE, France ⁴Universitat Autònoma de Barcelona, Facultat de Biociències, Spain

Journée "Big Ideas for Small Data", 13th May 2019

2 Data

3 Standard approaches

Bayesian contributions

5 Conclusion & Perspectives

Introduction ●○○○	Data 000	Standard approaches	Bayesian contributions	Conclusion & Perspectives
Context				

- Accidents leading to unplanned exposure of humans to ionizing radiation (IR) have occurred many times
 - overexposure in radiotherapy services or occupational settings
 - large-scale nuclear accidents
- Unclear radiation exposure scenarios and/or inconsistent findings
 - workers at risk of exposure may not wear their obligatory personal dosimeter
 - workers at risk of exposure may not store it correctly after use.
- Estimation of the **absorbed radiation dose** received by an exposed or suspected exposed individual may be crucial to:
 - Optimize patient-centered care
 - Predict the derived health consequences for both early and late effects
 - Perform rapid triage of exposed versus non-exposed persons
 - Clarify unclear radiation exposure scenarios
 - Appease the "worried well" persons

Dose assessment \Rightarrow Proof of exposure by court and professional associations

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Standard approaches

Bayesian contributions

Conclusion & Perspectives

4/47

Biological retrospective dosimetry

Data

- It offers the only possibility to estimate the individual absorbed dose
 - even weeks or months after a potential exposure (Kulka et al. (2018)).
 - when a direct measurement of IR exposure is not or no longer possible

Main goal

Estimation of the individual absorbed radiation dose from microscope counting of radiation-related chromosomal anomalies

- Radiation exposure causes chromosomal DeoxyriboNucleic Acid (DNA) lesions like double-stand breaks
- $\bullet~$ The broken fragments may repair incorrectly $\Rightarrow~$ Chromosome aberrations

Bayesian contributions

Conclusion & Perspectives

The dicentric chromosome assay (DCA)

- Dicentrics have a low naturally occurring background frequency
- Frequencies of dicentrics increase with the absorbed dose
 ⇒ Well-established and highly specific biological marker of radiation exposure
- Scoring dicentrics in peripheral human blood lymphocytes : "gold standard" biological method for retrospective dose estimation (IAEAb (2011)).

Photo: Olivier Seignette/Mikaël Lafontan/Médiathèque IRSN

(D) (A) (A) (A)

Introduction	Data	Standard approaches	Bayesian contributions	Conclusion & Perspectives
0000				
Main que	stions			

Given the number of dicentrics per cell observed in blood lymphocytes:

Question Q1

Can it be stated that a strictly positive radiation dose has been received by :

- In all of the analyzed cells (whole-body irradiation)?
- **3** only a fraction of the analyzed cells (partial irradiation)?
- **o** none of the analyzed cells ? (Relevant for unclear exposure scenarios)

Introduction	Data	Standard approaches	Bayesian contributions	Conclusion & Perspectives
0000				
Main que	stions			

Given the number of dicentrics per cell observed in blood lymphocytes:

Question Q1

Can it be stated that a strictly positive radiation dose has been received by :

- In all of the analyzed cells (whole-body irradiation)?
- **2** only a fraction of the analyzed cells (partial irradiation)?
- **③** none of the analyzed cells ? (Relevant for unclear exposure scenarios)

Question Q2

What is the **estimated absorbed dose** and the **uncertainty associated** to this estimation?

6/47

2 Data

- Standard approaches
- Bayesian contributions
- 6 Conclusion & Perspectives

Standard approaches

Bayesian contributions

Conclusion & Perspectives

4 real radiation accident victims (2006-2013) In-vivo data provided by IRSN/LRAcc

02

Number of dicentrics

Data

000

Id	Circum	stances of accident	Clinical signs	Physical dosimetry	Conventional cvtogenetics	
06-11	Exposure to y-r	ays	Vomiting (4h30), nausea, hair loss, Lymphocytes: 0.8 × 10 ⁻³	No	⇒ 👖	no: Number of peripheral blood lymphocytes
11-08	Medical contex to a γ-source (0	t; 10 minutes located next To 60)	Hematopoetic syndrom 7 days after exposure	No		analysed
08-03	Put the γ-sourc his pocket (10 r -> Hand burn	e (lr) in his hand then in ninutes to 1 hour)	lymphocytes: 1.05 × 10 ⁻³	0.25 Sv		Ro: Number
05-03	Exposure head Shoulders 5cms Neck 20cms aw	and chest : 15-30 seconds away from the X source ay from the X source	Erythema (collarbone) Lymphocytes: 2.39 × 10 ^{.3}	0.045 Sv	· ()	chromosomes observed in each cell
s -	06-11	2 -	08-03	2 - T	05-03	
80 -		8 -	8 -	80 -		
7roaddfees 0.4 0.6		Protections	Probabilies 0.4 0.6	Protobiliters 0.6		,

ō.

0.2 0.4 0.6 0.8

0.4 0.6 0.8

Standard approaches

Bayesian contributions

Conclusion & Perspectives

8 suspected exposed individuals (2006-2013) In-vivo data provided by IRSN/LRAcc

Data

000

4 real <u>suspected individuals</u> (2006-2013) <u>From</u> IRSN/LRAcc

Id	Circumstances of accident	Clinical signs	Physical dosimetry
06-63	Exposure to γ-rays (10-15 minutes)	No	No
06-70	Spent the night 25 centimeters away from a γ-source	No	No
06-13	Colleague of 06-11	No	No
06-15	Colleague of 06-11	No	No

For some of them, no dicentric was observed ...

In-vitro irradiation of blood samples - various healthy donors - different doses

Number of analyzed cells	Dose (Gray)	Number of dicentrics
19194	0	21
1676	0.05	3
1552	0.10	6
481	0.15	3
1057	0.24	11
1768	0.30	38
1187	0.33	18
2919	0.50	83
1538	0.80	100
869	1	90
1525	1.6	269
1844	2	545
352	2.31	122
784	3	482
534	4	521
341	4.70	381
94	5.77	143

IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÊ NUCLÊAIRE E 2000 10/47

< ∃⇒

2 Data

3 Standard approaches

Bayesian contributions

5 Conclusion & Perspectives

Dose-response model \mathcal{M}_A for in-vivo data Exposed and suspected exposed individuals

Standard approaches

Introduction

Data

Let's consider a given individual with n_0 analyzed cells:

- D₀ : Unknown absorbed dose (in Gray) received by each cell
- R_k : Number of dicentrics observed in each cell k ($k = 1, ..., n_0$)

In case of LOW-LET radiation and homogeneous irradiation

$$(\mathcal{M}_A) \qquad R_k \sim^{i.i.d} \mathsf{Poisson}(\lambda_0) \\ \lambda_0 = A + \alpha D_0 + \beta D_0^2$$

Bayesian contributions

- $\theta = (A, \alpha, \beta)$: unknown parameters with A > 0, $\beta > 0$, $\alpha > -2\sqrt{A\beta}$
- A: background expected number of dicentrics per cell at dose $D_0 = 0$

•
$$Y_0 = \sum_{k=1}^{n_0} R_k \sim Poisson(n_0\lambda_0)$$

Non-identifiable model \Rightarrow External data required to estimate $\theta = (A, \alpha, \beta)$

Conclusion & Perspectives

Dose-response model $\mathcal{M}_{\textit{C}}$ for calibration data

Standard approaches

Let's consider a given experimental (in-vitro) irradiation i $\in \{1, \ldots, I\}$

- D_i: Fixed absorbed dose (in Gray) received by each cell
- $Z_{i,l}$: Number of dicentrics observed in each cell $I \in \{1, ..., n_i\}$ at dose D_i

Bayesian contributions

Conclusion & Perspectives

13/47

In case of LOW-LET radiation and homogeneous irradiation

At a given dose D_i :

Data

Introduction

$$(\mathcal{M}_{C}) \qquad Z_{i,l} \sim^{i.i.d} \mathsf{Poisson}(\lambda_{i}) \\ \lambda_{i} = \mathsf{A} + \alpha \mathsf{D}_{i} + \beta \mathsf{D}_{i}^{2}$$

 $\Rightarrow Y_i = \sum_{l=1}^{n_i} Z_{i,l} \sim Poisson(n_i \lambda_i)$

where Y_i is the total number of dicentrics observed at dose D_i and n_i the total number of analyzed cells

 \bullet Fit $\mathcal{M}_{\textit{C}}$ to calibration data using maximum likelihood estimation

• Plug
$$\hat{\theta} = (\hat{A}, \hat{\alpha}, \hat{\beta})$$
 into $\mathcal{M}_{\mathcal{A}}$

• Derive point estimate $\hat{D_0}$ of the absorbed dose D_0 (inverse regression)

$$\hat{D_0}=g(\hat{A},\hat{lpha},\hat{eta})=rac{-\hat{lpha}+\sqrt{\hat{lpha}^2+4\hat{eta}(\hat{\lambda_0}-\hat{A})}}{2\hat{eta}}$$

where $\hat{\lambda_0} = \frac{Y_0}{n_0}$

Standard approaches

Bayesian contributions

Conclusion & Perspectives

Answering Q_2 - Estimation of the dose

Data

Id	Circumstances of accident	MLE for the dose D ₀	Id	Circumstances of accident	MLE for the dose D ₀
06-11	Exposure to γ -rays	4.40	06-13	Colleague of 06-11	0.02
11-08	Medical context; 10 minutes located next to a γ-source (Co 60)	1.88	06-14	Colleague of 06-11	0.02
08-03	Put the γ-source (lr) in his hand then in his pocket (10 minutes to 1 hour) -> Hand burn	0.23	06-15	Colleague of 06-11	-0.03
05-03	Exposure head and chest : 15-30 seconds Shoulders 5cms away from the X source Neck 20cms away from the X source	0.11	06-16	Colleague of 06-11	0.02
06-63	Exposure to γ -rays (10-15 minutes)	0.15	04-14	Positive dosimeter	-0.03
06-70	Spent the night 25 centimeters away from a γ-source	0.25	13-09	Positive dosimeter	-0.03

Potential drawbacks:

- If $\hat{\lambda_0} = \frac{Y_0}{n_0} = 0$ then $\hat{D}_0 < 0$ (Context: Small signal in the data)
- Prior information on the dose not accounted for
- Modular approach : Disjoint estimation of θ and D_0

• Approach 1: Multivariate delta-method

$$\begin{split} \sigma_{\hat{D}_{0}}^{2} &= \sigma_{\hat{A}}^{2} \left(\frac{\partial g}{\partial A}\right)_{A=\hat{A}}^{2} + \sigma_{\hat{\alpha}}^{2} \left(\frac{\partial g}{\partial \alpha}\right)_{\alpha=\hat{\alpha}}^{2} + \sigma_{\hat{\beta}}^{2} \left(\frac{\partial g}{\partial \beta}\right)_{\beta=\hat{\beta}}^{2} + \sigma_{\hat{\lambda}_{0}}^{2} \left(\frac{\partial g}{\partial \lambda_{0}}\right)_{\lambda_{0}=\frac{Y_{0}}{r_{0}}}^{2} \\ &+ 2 \left(\frac{\partial g}{\partial A}\right)_{A=\hat{A}} \left(\frac{\partial g}{\partial \alpha}\right)_{\alpha=\hat{\alpha}} \operatorname{cov}(\hat{A}, \hat{\alpha}) + 2 \left(\frac{\partial g}{\partial \alpha}\right)_{\alpha=\hat{\alpha}} \left(\frac{\partial g}{\partial \beta}\right)_{\beta=\hat{\beta}} \operatorname{cov}(\hat{\alpha}, \hat{\beta}) \\ &+ 2 \left(\frac{\partial g}{\partial A}\right)_{A=\hat{A}} \left(\frac{\partial g}{\partial \beta}\right)_{\beta=\hat{\beta}} \operatorname{cov}(\hat{A}, \hat{\beta}) \end{split}$$

 \Rightarrow Asymptotical 95% confidence interval on dose estimate: $\hat{D}_0 \pm 1.96\hat{\sigma}_{D_0}$

Approach 2: Bootstrap

Potential drawbacks:

- Is the asymptotic assumption correct?
- Bootstrap \Rightarrow Strong data redundancy if small signal in data
- Uncertainty on the dose estimation may depend on the statistical method used to compute the confidence interval

Introduction Data Standard approaches Bayesian contributions Conclusion & Perspectives

Hypothesis testing: $H_0: D_0 = 0$ vs $H_1: D_0 = d_1$ (with $d_1 > 0$)

- Test statistic: $Y_0 = \sum_{k=1}^{n_0} R_k$
- Under H_0 , $Y_0 \sim Poisson(n_0A)$
- Critical region: [y₀^{*}, +∞] with y₀^{*} = 0.95 quantile of Poisson(n₀Â)
 y₀^{*} is called "Decision threshold"
- If $y_0^{obs} > y_0^*$, H_0 is rejected with error (of the first kind) = 0.05
- Statistical power: 1 Frd_{H1}(y₀^{*}) where Frd_{H1} cumulative distribution function of a Poisson distribution with intensity = n₀(Â + âd₁ + βd₁²)
 - Detection Limit: The smallest value of dose *d*₁ from which the statistical power of the test is greater or equal to 0.95

17/47

 Introduction
 Data
 Standard approaches
 Bayesian contributions
 C

 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Conclusion & Perspectives

Standard approaches

Bayesian contributions

Conclusion & Perspectives

Answering Q1 - Strictly positive absorbed dose received?

$\mathsf{DL}=\mathsf{Detection}\ \mathsf{Limit}$

Data

Potential drawbacks:

- Binary answer to Q_1 : Rejection of H_0 or not
- D₀ is unknown ! : Statistical power?
- The statistical power may be very small for small doses $D_0...$
- Uncertainty on the estimation of the background expected number of dicentrics per cell A not accounted for
- Does not allow to test if **only a fraction** of the analyzed cells have received a strictly positive radiation dose

Introduction	Data 000	Standard approaches	Bayesian contributions	Conclusion & Perspectives
Aim of the	work			

• Can Bayesian statistical methods offer relevant alternative answers to questions Q_1 and Q_2 in biological retrospective dosimetry ?

- To account for expert knowledge when assigning a prior distribution on the unknown absorbed dose *D*₀
- To propose a **unique**, **flexible and coherent framework** allowing to simultaneously answer to questions Q_1 and Q_2

2 Data

3 Standard approaches

Bayesian contributions

5 Conclusion & Perspectives

Approach 1: the one previously described.... Directed Acyclic Graph of the full model $(M_A + M_C)$

- $\theta = (A, \alpha, \beta)$: shared parameters
- \bullet Possibility for the in-vivo data to be accounted for when fitting A, $\alpha,\,\beta$

22 / 47

• The Bayesian framework allows fitting this model in one step

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

23 / 47

The prior distributions

Data

- $A \sim Unif[0, +\infty[$
- $\alpha \sim Unif[-2\sqrt{A\beta}, +\infty[$
- $\beta \sim \textit{Unif}[0, +\infty[$
- Prior probability distribution on D_0
 - $D_0 \sim Unif(0, 10) \Rightarrow$ Vague prior
 - $D_0 \sim Gamma(a, b) \Rightarrow$ Informative prior

• Hyperparameters a and b of the Gamma prior may be fixed by expert knowledge given the accident scenario

Id	Circumstances of accident	Clinical signs	Physical dosimetry	Prior distribution on D_0
06-11	Exposure to γ-rays	Vomiting (4h30), nausea, hair loss, Lymphocytes: 0.8 × 10 ^{.3}	No	D_0 .median=2.5 D_0 max = 10 (q99-10) D_0 -Gamma(a=1.98 , b=0.66)
11-08	Medical context; 10 minutes located next to a γ- source (Co 60)	Hematopoetic syndrom 7 days after exposure	No	D_0 .median=2.5 D_0 max = 10 (q99~10) D_0 -Gamma(a=1.98 , b=0.66)
08-03	Put the γ-source (lr) in his hand then in his pocket (10 minutes to 1 hour) -> Hand burn	lymphocytes: 1.05 × 10 ⁻³	0.25 Sv	D ₀ .median=0.25 D ₀ max = 5 (q99-5) D ₀ -Gamma(a=0.4, b=0.6)
05-03	Exposure head and chest : 15- 30 seconds Shoulders 5cms away from the X source Neck 20cms away from the X source	Erythema (collarbone) Lymphocytes: 2.39×10 ⁻³	0.045 Sv	D ₀ .median=0.045 D ₀ max = 5 (q99-5) D ₀ -Gamma(a=0.2, b=0.44)

For individuals for which no clinical sign was observed: $D_0 \sim Unif(0,2)$ \Rightarrow Not enough informative ! To improve!

24 / 47

Introduction Data Standard approaches Bayesian contributions Conclusion & Perspectives

25 / 47

IRSN

 Introduction
 Data
 Standard approaches
 Bayesian contributions
 Conclusion & Perspectives

 0000
 000
 000
 000
 000
 000

 Answering
 Q2
 - Bayesian estimation of the dose
 000
 000

MCMC algorithm - Package R "rjags"

GUM= Multivariate Delta-Method

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

IRSN

 Introduction
 Data
 Standard approaches
 Bayesian contributions
 Conclusion & Perspectives

 0000
 0000
 0000
 0000
 0000
 0000

 Answering
 Q2
 Bayesian estimation of the dose
 000

IRSIN DE RADIOPROTECTION ET DE SÜRETÉ NUCLÉAIRE

(日)

27 / 47

Introduction	Data 000	Standard approaches	Bayesian contributions	Conclusion & Perspect
BUT				

Given the prior distribution assigned to D_0 , we are assuming that $D_0 > 0$

\Rightarrow Is this assumption relevant for all the considered individuals?

ives

 Standard approaches
 Bayesian contra

 ○○○○○○○○○
 ○○○○○○○●

Bayesian contributions

Conclusion & Perspectives

29/47

Answering Q_1 and Q_2 under the Bayesian framework

Question Q₁

Data

Introduction

Can it be stated that a strictly positive radiation dose has been received by :

- **1** all of the analyzed cells (whole-body irradiation)?
- **3** only a fraction of the analyzed cells (partial irradiation)?
- **one** of the analyzed cells ? (Relevant for unclear exposure scenarios)

The above sub-questions 1 and 3 can be formalized as :

A Bayesian model selection problem				
$\mathcal{M}_0: R_k \sim^{i.i.d} \textit{Poisson}(A)$	vs	$\mathcal{M}_{A}: \textit{R}_{k} \sim^{i.i.d} \textit{Poisson}(\textit{A} + \alpha\textit{D}_{0} + \beta\textit{D}_{0}^{2})$		
given in-vivo data and calibr	ation da	ata following model $\mathcal{M}_{\mathcal{C}}$ $(\mathcal{D}_0>0)$		

Standard approaches

Bayesian contributions

Conclusion & Perspectives

Answering Q_1 and Q_2 under the Bayesian framework

Credible interval at 95%

[0,0006; 0.0015]

[0.032; 0.048]

[0.044: 0.052]

イロン スピン メヨン メヨン

 Introduction
 Data
 Standard approaches
 Bayesian contributions
 Conclusion & Perspectives

 Occo
 Occo
 Occo
 Occo
 Occo
 Occo

 Answering
 Q1
 and
 Q2
 under the Bayesian framework
 Conclusion

 \Rightarrow A Bayes factor (Jeffreys, 1939) can be efficiently approximated (e.g., Monte-Carlo estimate)

But what about sub-question 2 about partial irradiation?

Introduction Data Standard approaches Bayesian contributions Conclusion & Perspectives

Idea: using a mixture model (Kamary et al. (2014) - arXiv)

Let's consider a given individual - potentially exposed - with n_0 analyzed cells:

- p_0 : unknown probability for each cell to have received a dose > 0
- D₀ : unknown absorbed dose (in Gray) received by each irradiated cell

A mixture model for in-vivo data (LOW LET + homogeneous irradiation)

 $\mathcal{M}_{\textit{mix}}$: $R_k \sim^{i.i.d} (1 - p_0) \textit{Poisson}(A) + p_0 \textit{Poisson}(A + \alpha D_0 + \beta D_0^2)$

- $D_0 > 0$ and $p_0 \in [0, 1]$
- $\theta = (A, \alpha, \beta)$: unknown parameters with A > 0, $\beta > 0$, $\alpha > -2\sqrt{A\beta}$
- A: common parameter shared by both mixture components
- p0 can also be interpreted as the proportion of irradiated cells
- D_0 and p_0 assumed to be identical for each irradiated cell
- $\bullet~\mathcal{M}_0$ and \mathcal{M}_A are very special cases of the mixture model

- $\theta = (A, \alpha, \beta)$: shared parameters
- The Bayesian framework allows fitting this model in one step

・ロン ・回 と ・ ヨ と ・ ヨ と

• If $p_0 = 0$, model \mathcal{M}_0 is selected given the available count data

- \Rightarrow Response to Q_1 is NO= "There is no evidence that a strictly positive radiation dose has been received".
- If $p_0 = 1$, model M_A is selected given the available count data
 - \Rightarrow Response to Q_1 is YES= "A strictly positive radiation dose has been received by all the analyzed cells".
- If $p_0 \in]0, 1[$, neither model \mathcal{M}_0 nor model \mathcal{M}_A is selected given the available count data
 - \Rightarrow Response to Q_1 is YES= "A strictly positive radiation dose has been received BUT only by a fraction of the analyzed cells" (partial body exposure).
 - The fraction of the body irradiated is defined as (IAEA report 2001):

$$F_0 = \frac{p_0 \times exp(D_0/\tilde{D})}{(1-p_0) + p_0 \times exp(D_0/\tilde{D})} \qquad \tilde{D} \sim \textit{Unif}(2.7, 3.5)$$

34 / 47

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- Posterior distribution on $p_0 \Rightarrow$ Probabilistic answer to Q_1
- $\bullet\,\,\Rightarrow\,$ Decision criterion to define the range of acceptance, rejection and indecision conclusions

- Let's c_1 , c_2 , U be fixed decision thresholds (to calibrate by simulation)
- Compute $\pi_1 = P(p_0 > c_1 | Y_i, R_k)$ and $\pi_2 = P(p_0 < c_2 | Y_i, R_k)$
 - If $\pi_1 > U \Rightarrow YES=$ "There is strong evidence that a strictly positive radiation dose has been received by all of the analyzed cells".
 - If $\pi_2 > U \Rightarrow NO=$ "There is no evidence that a strictly positive radiation dose has been received".
 - Else YES= "A strictly positive radiation dose has been received **BUT** only by a fraction of the analyzed cells" (partial body exposure).

ク Q (~ 35 / 47

Standard approaches

Bayesian contributions

Conclusion & Perspectives

The prior distributions

Data

- $A \sim Unif[0, +\infty[$
- $\alpha \sim Unif[-2\sqrt{A\beta}, +\infty[$
- $\beta \sim \textit{Unif}[0, +\infty[$
- $D_0 \sim \textit{Gamma}(a, b)$ or $D_0 \sim \textit{Unif}(0, 10)$
- p₀ ∼ Beta(c, d)
- Hyperparameters a,b,c,d may be fixed by expert knowledge given the accident scenario
- Default choice (Rousseau and Mengersen (2011)): c=0.5,d=0.5

Bayesian contributions

Conclusion & Perspectives

Bayesian inference

Data

Adaptive Metropolis-Hastings algorithm

- Block updating for (A, α, β) using a Gaussian random walk (20% acceptation rate)
- Gaussian random walk for D_0 (40% acceptation rate)
- For the mixture weight p₀:
 - Iteration t: Independent proposal $\Rightarrow p_0^{cand} \sim Beta(0.5, 0.5)$
 - Iteration t+1: Random walk $\Rightarrow p_0^{cand} \sim Beta(1 + p_0^t, 2 p_0^t)$
 - 40% acceptation rate
- Implemented in Python (2.7.10) (100000 iterations = 30 seconds)

Asymptotic consistency of the proposed mixture testing procedure

- Proved by Kamary et al. (2014) in the specific case of embedded mixture components
 - "If one model is indeed correct, the posterior medians of the corresponding weight in the mixture settles very quickly near the boundary values of 1 as the sample size increases"

SIN

Introduction	Data 000	Standard approaches	Bayesian contributions ○○○○○○○○○○○○○○○○○○○○○○	Conclusion & Perspectives
Remark				

 Equivalent formulation of M_{mix} pointing out the latent allocation variables
 M_{mix}: R_k ∼ⁱ Poisson(λ_k) with λ_k = A + αD_{0k} + βD_{0k}²
 D_{0k} = γ_k × D₀ with γ_k ∼ Bern(p₀)

 Easy implementation in WinBUGS or JAGS but inefficient Gibbs sampler!!!

Convergence diagnostics on the weight p_0

Standard approaches

Introduction

Gibbs sampler (Left) vs Adaptive Metropolis-Hastings (Right)

Bayesian contributions

Conclusion & Perspectives

^{39 / 47}

Standard approaches

Bayesian contributions

Conclusion & Perspectives

Posterior statistics, Bayes factor and posterior probability of \mathcal{M}_1

		Bayes Factor M ₁ vs M ₀ (Kass & Raftery (1995)	P(M ₁ y)				
	D₀ posterior median 95%Cl	p₀ posterior median 95%Cl	F ₀ posterior median 95%Cl	P(p ₀ >0.8)	P(p ₀ <0.2)		
06-11	4.61 [4.14; 5.19]	0.91 [0.76,1.00]	0.97 [0.90; 1.00]	0.93	0.0	+∞ (very strong)	1 [1.0; 1.0]
11-08	2.09 [1.76; 2.69]	0.84 [0.56; 1.00]	0.90 [0.69; 1.00]	0.60	0.0	1.75 ^e +185 (very strong)	1 [1.0; 1.0]
08-03	0.32 [0.15; 1.25]	0.67 [0.10; 1.00]	0.69 [0.11; 1.00]	0.39	0.11	>10 [*] 7 (very strong)	1 [1.0; 1.0]
05-03	0.13 [0.0002; 1.29]	0.54 [0.011; 1.0]	0;55 [0.01; 1.0]	0.31	0.25	4 (Positive)	0.67 [0.63; 0.70]
06-63	0.47 [0.08; 1.84]	0.23 [0.02; 0.99]	0.26 [0.02; 0.99]	0.16	0.46	8.3 (Positive)	0.86 [0.83; 0.88]
06-70	0.55 [0.16; 1.84]	0.36 [0.04; 1.00]	0.40 [0.06; 1.00]	0.21	0.33	303.03 (Very Strong)	1.00 [1.0; 1.0]

INSTITUT DE RADIOPROTECTIO

臣

・ロト ・回ト ・ヨト ・ヨト

Standard approaches

Bayesian contributions

Conclusion & Perspectives

Comparison of dose estimations

Data

 $\begin{array}{l} \mbox{Posterior medians} + 95\% \mbox{ credible intervals} \\ \mbox{ISO2014} = \mbox{Multivariate Delta Method} \end{array}$

・ロト ・日ト ・ヨト ・ヨト

Prior probability distribution on p_0 : Beta(0.5,0.5)

From left to right : Victims 06-11 (Estimated dose: 4.61 Gy), 08-03 (Estimated dose: 0.32Gy), 05-03 (Estimated dose: 0.13Gy)

- Weak influence of the prior choice on D_0 (results not shown)
- Lack of information in the data to infer p_0 especially when dose is small \Rightarrow More data needed to infer p_0 (and then answer Q_1)?

Sensitivity to the prior choice on p_0

Data

Introduction

• Informative Beta priors defined from expert knowledge

Standard approaches

• Jeffrey's prior Beta(0.5,0.5)

Bayesian contributions

Posterior distribution on the dose D_0

Posterior distribution on the weight p_0

イロト イヨト イヨト イヨト

 \Rightarrow Sensitivity is clearly present but should naturally vanish as the number \cite{IRSN} of analyzed blood lymphocytes increases

43 / 47

Conclusion & Perspectives

2 Data

3 Standard approaches

Bayesian contributions

5 Conclusion & Perspectives

Introduction	Data 000	Standard approaches	Bayesian contributions	Conclusion & Perspectives ●○○
Conclusion	s			

- First fully Bayesian approach proposed to simultaneously answer to two main questions of interest in biological retrospective dosimetry
 - \Rightarrow New insights to the European Radiation Dosimetry (EURADOS) Working Group 10, task 10.6
- Using the proposed mixture model \mathcal{M}_{mix} allows to get rich probabilistic answers to questions Q_1 and Q_2
 - \Rightarrow Relevant input data for decision-making in the contexts of clinical management of patients, rapid triage after large-scale radiation incident, reassuring the 'worried-well'...
- In case of low suspected dose, the number of analyzed blood lymphocytes should be higher to obtain more precise answers to question Q₁

ICIN
 ICIN

Introduction	Data 000	Standard approaches	Bayesian contributions	Conclusion & Perspectives ○●○
Perspective	es			

- Simulation studies to validate the whole methodology and calibrate the decision thresholds (c₁,c₂,U)
- Validate the whole methodology from new experimental data for which D₀ and p₀ are known
- Bayesian optimal design to define the number of analyzed cells n_0 required to optimally answer to question Q_1 and Q_2 under budget constraint
- Extend the proposed approach to other chromosome aberrations
- Provide operational tools to dosimetrists

IRSN and and a construction for # Monoral Construction [1] IAEA 2011 report (2011) Cytogenetic dosimetry: applications in preparedness anfor and response to radiation emergencies. International Atomic Energy Agency: Vienna.

[2] Merkle W. (1983) Statistical Methods in Regression and Calibration Analysis of Chromosome Aberration Data. Radiat Environ Biophys. 1:217-233
[3] Ainsbury et al. (2014) Review of Bayesian statistical analysis methods for cytogenetic radiation biodosimetry with a practical example. Radiation Protection Dosimetry. 162(3):185-96

[4] Higueras et al. (2016) A new Bayesian model applied to cytogenetic partial body irradiation estimation. Radiation Protection Dosimetry. 168(3):330-6
[5] Kamary K., Mengersen K., Robert CP., Rousseau J. (2014) Testing hypotheses via a mixture estimation model. ArXiv:1412.2044v2

INTRO T
 INTRO T
 INFORMATION
 INFORMATION