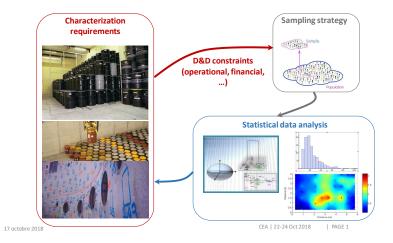
Statistical characterization for nuclear dismantling applications with small data sets

G. Blatman¹, T. Delage¹, <u>B. looss¹</u>, N. Pérot²

1 EDF R&D, France; 2 CEA/DEN, France

$\mathsf{SFdS}/\mathsf{MASCOT}\text{-}\mathsf{NUM}$ meeting - Big ideas for small data

Context



Context : Radiological characterization of contaminated elements from nuclear facilities

Problem : Small number of available data

 \longrightarrow Inappropriate statistical tools (e.g. Gaussian approximation) to determinate risk confidence bounds

Ex : The 2σ rule (95% of values inside $\pm 2\sigma$) works in the Gaussian case

Risks of a wrong estimation of the contamination : Under-estimation (impact on safety) or over-estimation (impact on economic cost)

Strategy : Resort to robust inequalities which only depend on weak assumptions about the statistical distribution of the measured quantity

1 Prediction, tolerance and confidence intervals

1 Prediction, tolerance and confidence intervals

2 Application to real measurements

Probabilistic framework

- Consider a set of measures $\mathcal{X} = \{X_1, \dots, X_n\}$ of a given quantity
- They are assumed to be independent copies of a continuous random variable X with unknown distribution (but finite mean and variance)
- In the context of risk analysis, it is relevant to estimate from the data the three following kinds of probabilistic intervals :

$\mathbb{P}\left[X\leqslant s\right]\geqslant\gamma$	$\mathbb{P}\left[\mathbb{P}\left[X\leqslant s\right] \geqslant \gamma\right] \geqslant \beta$	

 s, s_1, s_2 : threshold values γ, β : prescribed probabilities (e.g. 95%) $\alpha = 1 - \gamma$: probabilistic risk bound ; then $\mathbb{P}[X \ge s] \le \alpha$

Probabilistic framework

- Consider a set of measures $\mathcal{X} = \{X_1, \dots, X_n\}$ of a given quantity
- They are assumed to be independent copies of a continuous random variable X with unknown distribution (but finite mean and variance)
- In the context of risk analysis, it is relevant to estimate from the data the three following kinds of probabilistic intervals :

Unilateral prediction	Unilateral tolerance	Bilateral confidence interval
interval	interval	on $\mu = \mathbb{E}\left[X ight]$
$\mathbb{P}\left[X\leqslant s\right]\geqslant\gamma$	$\mathbb{P}\left[\mathbb{P}\left[X\leqslant s\right]\geqslant\gamma\right]\geqslant\beta$	$\mathbb{P}\left[s_1 \leqslant \mu \leqslant s_2\right] \geqslant \gamma$

 s, s_1, s_2 : threshold values γ, β : prescribed probabilities (e.g. 95%) $\alpha = 1 - \gamma$: probabilistic risk bound ; then $\mathbb{P}[X \ge s] \le \alpha$

Notation :
$$X \sim N(\mu, \sigma)$$
 , $\mu = \mathbb{E}[X]$, $\sigma^2 = \mathbb{V}ar[X]$
 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$, $z_u = u \cdot \mathcal{N}(0, 1)$ -quantile

Gaussian case with known (μ, σ) : The exact α -prediction interval is

 $s = \mu + \sigma z_{1-\alpha}$

Gaussian case with unknown (μ, σ) : The exact α/β -tolerance interval is

$$s = \bar{X}_n + t_{n-1,\beta,\sqrt{n}z_{1-\alpha}} \frac{S_n}{\sqrt{n}}$$

However these are only approximations if X is not Gaussian, which may reveal poor if n is small and/or X is highly skewed

Notation :
$$X \sim \mathsf{N}(\mu, \sigma)$$
 , $\mu = \mathbb{E}[X]$, $\sigma^2 = \mathbb{V}\mathrm{ar}[X]$
 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$, $z_u = u \cdot \mathcal{N}(0, 1)$ -quantile

Gaussian case with known (μ, σ) : The exact α -prediction interval is

 $s = \mu + \sigma z_{1-\alpha}$

Gaussian case with unknown (μ, σ) : The exact α/β -tolerance interval is

$$s = \bar{X}_n + t_{n-1,\beta,\sqrt{n}z_{1-\alpha}} \frac{S_n}{\sqrt{n}}$$

However these are only approximations if X is not Gaussian, which may reveal poor if n is small and/or X is highly skewed

Notation :
$$X \sim \mathsf{N}(\mu, \sigma)$$
 , $\mu = \mathbb{E}[X]$, $\sigma^2 = \mathbb{V}\mathrm{ar}[X]$
 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$, $z_u = u \cdot \mathcal{N}(0, 1)$ -quantile

Gaussian case with known (μ, σ) : The exact α -prediction interval is

 $s = \mu + \sigma z_{1-\alpha}$

Gaussian case with unknown (μ, σ) : The exact α/β -tolerance interval is

$$s = \bar{X}_n + t_{n-1,\beta,\sqrt{n}z_{1-\alpha}} \frac{S_n}{\sqrt{n}}$$

However these are only approximations if X is not Gaussian, which may reveal poor if n is small and/or X is highly skewed

Notation :
$$X \sim N(\mu, \sigma)$$
 , $\mu = \mathbb{E}[X]$, $\sigma^2 = \mathbb{V}ar[X]$
 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$, $z_u = u \cdot \mathcal{N}(0, 1)$ -quantile

Gaussian case with known (μ, σ) : The exact α -prediction interval is

 $s = \mu + \sigma z_{1-\alpha}$

Gaussian case with unknown (μ, σ) : The exact α/β -tolerance interval is

$$s = \bar{X}_n + t_{n-1,\beta,\sqrt{n}z_{1-\alpha}} \frac{S_n}{\sqrt{n}}$$

However these are only approximations if X is not Gaussian, which may reveal poor if n is small and/or X is highly skewed

We recall that we look for $\mathbb{P}\left[X \geqslant s\right] \leqslant \alpha$

Concentration inequalities give

$$s = \bar{X}_n + t$$
 and $\alpha = \left(1 + \frac{t^2}{kS_n^2}\right)^{-1}$

with $t \ge 0$ and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Bienaymé-Chebyshev (BC)	1	None
Camp-Meidell (CM)	4/9	Unimodal pdf
Van Dantzig (VD)	3/8	Convex pdf tails

Note : Camp-Meidell inequality gives the so-called " 3σ rule"

We recall that we look for $\mathbb{P}\left[X \geqslant s\right] \leqslant \alpha$ Concentration inequalities give

$$s = ar{X}_n + t$$
 and $lpha = \left(1 + rac{t^2}{kS_n^2}
ight)^{-1}$

with $t \ge 0$ and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Bienaymé-Chebyshev (BC)	1	None
Camp-Meidell (CM)	4/9	Unimodal pdf
Van Dantzig (VD)	3/8	Convex pdf tails

Note : Camp-Meidell inequality gives the so-called " 3σ rule"

We recall that we look for $\mathbb{P}\left[X \geqslant s\right] \leqslant \alpha$ Concentration inequalities give

$$s = ar{X}_n + t$$
 and $lpha = \left(1 + rac{t^2}{kS_n^2}
ight)^{-1}$

with $t \ge 0$ and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Bienaymé-Chebyshev (BC)	1	None
Camp-Meidell (CM)	4/9	Unimodal pdf
Van Dantzig (VD)	3/8	Convex pdf tails

Note : Camp-Meidell inequality gives the so-called " 3σ rule"

We recall that we look for $\mathbb{P}\left[X \geqslant s\right] \leqslant \alpha$ Concentration inequalities give

$$s = ar{X}_n + t$$
 and $lpha = \left(1 + rac{t^2}{kS_n^2}
ight)^{-1}$

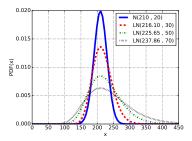
with $t \ge 0$ and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Inequality name	Value of k	Assumptions
Bienaymé-Chebyshev (BC)	1	None
Camp-Meidell (CM)	4/9	Unimodal pdf
Van Dantzig (VD)	3/8	Convex pdf tails

Note : Camp-Meidell inequality gives the so-called " 3σ rule"

Examples of risk estimates with known distributions of X



$\alpha = 0.05$	$\mathcal{N}(210, 20)$	$\mathcal{LN}(216, 30)$	$\mathcal{LN}(226, 50)$	$\mathcal{LN}(238,70)$
Gauss	0.05	0.04	0.04	0.03
BC	0.27	0.25	0.23	0.23
СМ	0.14	0.13	0.12	0.12
VD	0.12	0.11	0.10	0.10

A β -confidence level is required due to the empirical estimation of the mean and standard deviation

$$\mathbb{P}\left[\mathbb{P}\left[X \geqslant s\right] \leqslant \alpha\right] \geqslant \beta$$

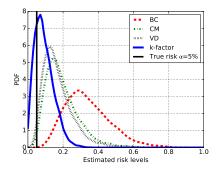
From sample $\mathcal{X} = \{X_1, \dots, X_n\}$, we repeat B times (e.g. B = 500) :

- Create a new *n*-size sample \mathcal{X}' by sampling with replacement in \mathcal{X} ,
- Compute \bar{X}_n and S_n ,
- If s (resp. α) is fixed, compute t and α (resp. s)

From the B-size sample of α values (resp. s values), take the $\beta\text{-quantile}$ of α (resp. s)

Numerical experiments : $X \sim \mathcal{LN}(238, 70)$ and n = 30

Keep $\beta = 95\%$ -quantile of bootstrap sample (B = 500) of α estimates



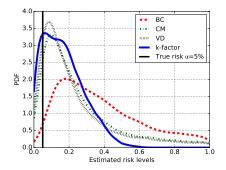
Statistical distributions of the quantiles (N = 5000 repetitions)

Proportion of non-conservative estimates of the exact $\alpha=5\%$:

k-factor	BC	СМ	VD
0.25	0.00	0.00	0.01

Numerical experiments : $X \sim \mathcal{LN}(238, 70)$ and n = 10

Keep $\beta = 95\%$ -quantile of bootstrap sample (B = 500) of α estimates



Statistical distributions of the quantiles (N = 5000 repetitions)

Proportion of non-conservative estimates of the exact $\alpha=5\%$:

k-factor	BC	СМ	VD
0.17	0.01	0.07	0.10

1 Prediction, tolerance and confidence intervals

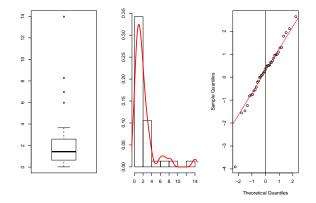
2 Application to real measurements

Evaluation of H_2 flow rates (in I / drum / year) required for disposal in final waste repositories

Population of several thousands drums

Data : H₂ flow rates of radioactive waste drums

Measures on a random sample of size n = 38, $(\bar{X}_n, S_n) = (2.18, 2.67)$



Adequacy to a parametric distribution (as the log-normal one) is rejected by statistical tests

Some results obtained with the Camp-Meidell inequality

Estimation of the risk α of threshold exceedance ($\beta=0.95$) :

$$s = 5 \text{ gives } \alpha = 58\%$$

$$s = 10 \text{ gives } \alpha = 11\%$$

$$s = 15 \text{ gives } \alpha = 4\%$$

Estimation of the relative error on the mean flow rate (the empirical mean is equal to 2.18 l/drum/year) :

- 31% = relative error on the estimation of the mean H₂ flow rate with $(\alpha, \beta) = (0.75, 0.95)$
- 93 = sample size required to reach a 20%-relative error on the estimation of the mean with $(\alpha, \beta) = (0.75, 0.95)$

Some results obtained with the Camp-Meidell inequality

Estimation of the risk α of threshold exceedance ($\beta = 0.95$) :

$$s = 5 \text{ gives } \alpha = 58\%$$

$$s = 10 \text{ gives } \alpha = 11\%$$

$$s = 15 \text{ gives } \alpha = 4\%$$

Estimation of the relative error on the mean flow rate (the empirical mean is equal to 2.18 I/drum/year) :

- 31% = relative error on the estimation of the mean H₂ flow rate with $(\alpha, \beta) = (0.75, 0.95)$
- 93 = sample size required to reach a 20%-relative error on the estimation of the mean with $(\alpha, \beta) = (0.75, 0.95)$

Conclusions and prospects

- Be careful with the Gaussian approximation especially for small data samples
- Concentration inequalities provide robust risk bound and confidence interval for the mean
- Their degrees of conservatism are linked to explicit assumptions on the distribution of the studied variable

• Apply more sophisticated concentration inequalities in order to give tighter bounds

- G. Blatman, T. Delage, B. looss and N. Pérot. Probabilistic risk bounds for the characterization of radiological contamination. The European Journal of Physics - Nuclear Sciences & Technology (EPJ-N), 3, 23, 2017
- P-C. Pupion and G. Pupion, Méthodes statistiques applicables aux petits échantillons, Hermann, 2010
- G.J. Hahn and W.Q. Meeker, Statistical intervals. A guide for practitionners, Wiley-Interscience, 1991