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Problem statement

Context : Radiological characterization of contaminated elements from

nuclear facilities

Problem : Small number of available data

−→ Inappropriate statistical tools (e.g. Gaussian approximation) to

determinate risk confidence bounds

Ex : The 2σ rule (95% of values inside ±2σ) works in the Gaussian case

Risks of a wrong estimation of the contamination : Under-estimation

(impact on safety) or over-estimation (impact on economic cost)

Strategy : Resort to robust inequalities which only depend on weak

assumptions about the statistical distribution of the measured quantity
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Outline

1 Prediction, tolerance and confidence intervals

2 Application to real measurements
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Probabilistic framework

Consider a set of measures X = {X1, . . . , Xn} of a given quantity

They are assumed to be independent copies of a continuous random

variable X with unknown distribution (but finite mean and variance)

In the context of risk analysis, it is relevant to estimate from the

data the three following kinds of probabilistic intervals :

Unilateral prediction

interval

P [X 6 s] > γ

Unilateral tolerance

interval

P [P [X 6 s] > γ] > β

Bilateral confidence interval

on µ = E [X]

P [s1 6 µ 6 s2] > γ

s, s1, s2 : threshold values γ, β : prescribed probabilities (e.g. 95%)

α = 1− γ : probabilistic risk bound ; then P [X > s] 6 α
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Intervals based on Gaussian approximation

Notation : X ∼ N(µ, σ) , µ = E [X] , σ2 = Var [X]

X̄n =
1

n

n∑
i=1

Xi , S2
n = 1

n−1
∑n
i=1

(
Xi − X̄n

)2
, zu = u-N (0, 1)-quantile

Gaussian case with known (µ, σ) : The exact α-prediction interval is

s = µ+ σz1−α

Gaussian case with unknown (µ, σ) : The exact α/β-tolerance interval is

s = X̄n + tn−1,β,
√
nz1−α

Sn√
n

However these are only approximations if X is not Gaussian, which may

reveal poor if n is small and/or X is highly skewed
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Intervals based on concentration inequalities

We recall that we look for P [X > s] 6 α

Concentration inequalities give

s = X̄n + t and α =

(
1 +

t2

kS2
n

)−1
with t ≥ 0 and k a positive constant

In practice, either s is fixed, either α is fixed (then t is directly recovered)

Inequality name Value of k Assumptions

Bienaymé-Chebyshev (BC) 1 None

Camp-Meidell (CM) 4/9 Unimodal pdf

Van Dantzig (VD) 3/8 Convex pdf tails

Note : Camp-Meidell inequality gives the so-called “3σ rule”
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Examples of risk estimates with known distributions of X

0 50 100 150 200 250 300 350 400 450
x

0.000

0.005

0.010

0.015

0.020

PD
F(

x)

N(210 , 20)
LN(216.10 , 30)
LN(225.65 , 50)
LN(237.86 , 70)

α = 0.05 N (210, 20) LN (216, 30) LN (226, 50) LN (238, 70)

Gauss 0.05 0.04 0.04 0.03

BC 0.27 0.25 0.23 0.23

CM 0.14 0.13 0.12 0.12

VD 0.12 0.11 0.10 0.10
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Extension to tolerance intervals by bootstrapping

A β-confidence level is required due to the empirical estimation of the

mean and standard deviation

P [P [X > s] 6 α] > β

From sample X = {X1, . . . , Xn}, we repeat B times (e.g. B = 500) :

Create a new n-size sample X ′ by sampling with replacement in X ,

Compute X̄n and Sn,

If s (resp. α) is fixed, compute t and α (resp. s)

From the B-size sample of α values (resp. s values), take the β-quantile

of α (resp. s)
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Numerical experiments : X ∼ LN (238, 70) and n = 30

Keep β = 95%-quantile of bootstrap sample (B = 500) of α estimates

0.0 0.2 0.4 0.6 0.8 1.0
Estimated risk levels

0

1

2

3

4

5

6

7

8

P
D

F

BC

CM

VD

k-factor
True risk =5%

Statistical distributions of the quantiles (N = 5000 repetitions)

Proportion of non-conservative estimates of the exact α = 5% :

k-factor BC CM VD

0.25 0.00 0.00 0.01
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Numerical experiments : X ∼ LN (238, 70) and n = 10

Keep β = 95%-quantile of bootstrap sample (B = 500) of α estimates

0.0 0.2 0.4 0.6 0.8 1.0
Estimated risk levels

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
D

F

BC

CM

VD

k-factor
True risk =5%

Statistical distributions of the quantiles (N = 5000 repetitions)

Proportion of non-conservative estimates of the exact α = 5% :

k-factor BC CM VD

0.17 0.01 0.07 0.10
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Outline

1 Prediction, tolerance and confidence intervals

2 Application to real measurements
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Data : H2 flow rates of radioactive waste drums

Evaluation of H2 flow rates (in l / drum / year) required for disposal in

final waste repositories

Population of several thousands drums
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Data : H2 flow rates of radioactive waste drums

Measures on a random sample of size n = 38, (X̄n, Sn) = (2.18, 2.67)
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Adequacy to a parametric distribution (as the log-normal one) is rejected

by statistical tests
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Some results obtained with the Camp-Meidell inequality

Estimation of the risk α of threshold exceedance (β = 0.95) :

s = 5 gives α = 58%

s = 10 gives α = 11%

s = 15 gives α = 4%

Estimation of the relative error on the mean flow rate (the empirical

mean is equal to 2.18 l/drum/year) :

31% = relative error on the estimation of the mean H2 flow rate

with (α, β) = (0.75, 0.95)

93 = sample size required to reach a 20%-relative error on the

estimation of the mean with (α, β) = (0.75, 0.95)
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Conclusions and prospects

Be careful with the Gaussian approximation especially for small data

samples

Concentration inequalities provide robust risk bound and confidence

interval for the mean

Their degrees of conservatism are linked to explicit assumptions on the

distribution of the studied variable

Apply more sophisticated concentration inequalities in order to give

tighter bounds
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