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1 Context

Learning with neural networks empirically leads to state of the art results for many tasks in computer
vision (image segmentation, image classification, etc.), as well as in many research domains (signal pro-
cessing, robotics, etc) under the umbrella of what is now called “artificial intelligence”,

Yet, today’s best deep networks can have up to billions of parameters and their empirical success
typically requires two ingredients: 1) very large training datasets and 2) substantial computing power.
This practically limits the applicability of these techniques in fields where data is scarce, or in scenarios
where energy consumption or training time become crucial resources.

To circumvent these bottlenecks, a possible alternative is to consider sparse deep networks, where
only few network parameters are nonzero. Indeed, sparsity plays the role of a proxy both for the memory
required to store such networks and for the complexity of computing the network’s output given its input.

As an example, recent work [[1] has empirically shown that fast linear transforms such as the Hadamard
transform can be reverse-engineered by optimizing linear sparse deep networks using so-called proximal
algorithms, with guaranteed convergence to stationary points of the objective function.

2 Goals

The goal of this internship is twofold: to adapt these proximal algorithms to the complex-valued case; to
explore these approaches to train nonlinear sparse deep networks, with a focus on the ReLLU nonlinearity.

Proximal algorithms for multilayer sparse matrix factorizations yield approximations of a given matrix
A as a product of L sparse factors, A ~ HeL:1 S¢. Optimizing one factor, the other ones being fixed,
is an instance of a sparsity constrained linear inverse problem, which has been widely studied [2] and
successfully addressed with iterative proximal methods [3] either based on convex or nonconvex sparsity-
promoting penalties. Proximal factorization approaches have been empirically explored with success to
reverse-engineer real-valued linear transforms [l], yet many important transforms such as the Fourier
transform are indeed complex-valued.

A primary objective is to extend these algorithms (and possibly their convergence analysis) to the
complex case, before exploring their adaptation to train sparse deep networks with the ReL U nonlinearity.

In a first step, the intern will get familiar with the concepts and tools of proximal optimization
[B], sparse regularization for linear inverse problems [2], and multilayer sparse factorization [, 4] via a
bibliographic study. In order to establish a testbed and baseline for experiments, getting acquainted
with the FAuST library (Python and Matlab interfaces, https://faust.inria.fr) developed in the
team will be needed, as well as with a standard deep learning tool such as pytorch. Then, the intern
will propose, implement, and test modified optimization algorithms, starting with the toy problem of
reverse-engineering the Fast Fourier Transform. Standard datasets for large-scale learning [B|Y [6] will
serve as a testbed for the resulting algorithms. Successful work is expected to lead to a paper submission.

Further information: Please contact Rémi Gribonval for more information. The intern can receive a
"gratification” if needed and continuation as a PhD is possible.

Thttps://wuw.cs.toronto.edu/~kriz/cifar.html


https://faust.inria.fr
https://www.cs.toronto.edu/~kriz/cifar.html
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1 Context

Learning with neural networks empirically leads to state of the art results for many tasks in computer
vision (image segmentation, image classification, etc.), as well as in many research domains (signal pro-
cessing, robotics, etc) under the umbrella of what is now called “artificial intelligence”,

Yet, today’s best deep networks can have up to billions of parameters and their empirical success
typically requires two ingredients: 1) very large training datasets and 2) substantial computing power.
This practically limits the applicability of these techniques in fields where data is scarce, or in scenarios
where energy consumption or training time become crucial resources.

To circumvent these bottlenecks, a possible alternative is to consider sparse deep networks, where
only few network parameters are nonzero. Indeed, sparsity plays the role of a proxy both for the memory
required to store such networks and for the complexity of computing the network’s output given its input.

As an example, recent work [[1] has empirically shown that fast linear transforms such as the Hadamard
transform can be reverse-engineered by optimizing linear sparse deep networks using so-called proximal
algorithms, with guaranteed convergence to stationary points of the objective function.

2 Goals

The goal of this internship is to explore from a mathematical perspective the optimization problems
and algorithms involved in the training of sparse deep networks. This is expected to yield a better
understanding of their conditions of success, and to possible adaptations with improved performance.

Proximal algorithms for multilayer sparse matrix factorizations yield approximations of a given matrix
A as a product of L sparse factors, A = H5L:1 Sy. Optimizing one factor, the other ones being fixed,
is an instance of sparsity constrained linear inverse problems which have been widely studied [2] and
successfully addressed with iterative proximal methods [3]. These methods are based on convex (¢! norm)
or nonconvex (£° pseudo-norm) sparsity-promoting penalties, and are endowed with a solid mathematical
understanding of their conditions of success. In contrast, despite empirical successes [[], little is known
about the conditions of success of sparse factorization approaches even for two-layer sparse factorization.

A primary objective is to study conditions under which a matrix admits a unique two-layer sparse
factorization A = S1Ss, up to natural equivalence classes corresponding to permutation and scaling of
the rows (resp. columns) of Sy (resp. of Sg). The extension of uniqueness to more layers, in the spirit of
M, Chapter 7], will then be investigated before characterizing properties of the local and global optima of
the underlying cost functions in order to shed light on the optimization landscape of sparse deep networks,
either linear or with the ReLLU nonlinearity.

In a first step, the intern will get familiar with the concepts and tools of sparse regularization for
linear inverse problems [2], multilayer sparse factorization [, #], and on the optimization landscape
of deep networks [, B, [{] via a bibliographic study. To support the mathematical exploration with
empirical experiments and illustrations, the intern is encouraged to get acquainted with software tools
for deep learning such as pytorch, and with the FAuST library (Python and Matlab interfaces, https:
//faust.inria.fr) developed in the team for multilayer sparse factorization. Successful work is expected
to lead to a paper submission.

Further information: Please contact Rémi Gribonval for more information. The intern can receive a
"gratification” if needed and continuation as a PhD is possible.
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