Multiple changepoint detection

Outliers and Constraints

G. RIGAILL
with V. RUNGE, T. HOCKING, R. MAIDSTONE, P. FEARNHEAD

LaMME (Stat & Genome) and IPS2 (Gnet)

October 2019

= INRA Vips2

Institute of Plant Sciences
SCIENCE & IMPACT \\ GENOPOLE

G. Rigaill



Multiple changepoints

Outline

@ Muitiple changepoints

G. Rigaill



ple changepoints

Examples
Copy Number data

[Picard et al. 2005]
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[Hocking et al. 2015]
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Spike-Train data

[Jewell et al. 2018]
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Multiple changepoints

A common yet major problem

According to the National Research Council (US)

@ A need for complex models
» Genomics [Hocking et al. 2016, Pierre-Jean et al. 2015...]
» Geology, Finance, Biology, ...

Copy Number

2000 00

Order on the genome

@ A recent explosion in methods for detecting changes

» Univariate Gaussian model: [Harchaoui and Levy-Leduc 2009, Killick et al. 2011, Frick et al.
2014, Lin et al. 2015, Dette and Wied 2015, Haynes et al. 2016, Maidstone et al. 2017, Fryzlewicz 2017...]

Methods (exactly) minimizing a (penalized) cost
@ Good statistical properties [Yao 1989, Lebarbier 2005, Baraud et al. 2009, Arlot et al. 2012]
@ For which models is the computational burden in O(n?) or less ?
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Multiple changepoints

A parametric piecewise constant model

data Xj,...,Xn
changes 7 = (71,..,7p) K h T, T,
segments Sy = (7g—1, 7d] : 6,
parameters 6 = (04, ..,0p) gem ° 0,
model X; ~ F(04) iid e
Model ¥ — Lossy — Minimize

|7 Td .

Xi~N(g0?) (X007 X 5 (X~ 0a)
d=114_1+1

@ the number and the position of the changes are not known
@ the set of all segmentations, M, is of size 2"~
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Multiple changepoints

Maximum likelihood

@ Minus the log-likelihood

|7]

cost(t) = min{ Z (X;,0)}

a=1 Tg_1+1

@ Minimizing cost(7) would lead to n — 1 changes
@ We need to penalize!



Multiple changepoints

Penalised Maximum likelihood

@ Linear penalties, €.9 (vao 1989
pen(D) = 252D log(n)
@ Concave penalites, €.g iebarbier 2005]

pen(D) = 262D(2log(n/D) + 5)

@ Good statistical properties
[Yao 1989, Lavielle et al. 2000, Lebarbier 2005, Garreau et al. 2018]
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Algorithms

Optimization with a linear penalty: pen(D) = 5D

arg min {cost(7) + S|7|}

@ Use it several times for a concave penalty (kilick et al. 2012, Haynes et al. 2016]

v

Optimization given the number of changepoints

arg min {cost(7)}
T, |T|=D
@ Update-rules similar to those for linear penalties

@ | will not talk about those in this talk
[Fisher 1958, Bellman 1961, Picard 2005, Rigaill 2010-2015, Maidstone et al. 2016]
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e Dynamic Programming Algorithms
@ Recurrence on the last change
@ Recurrence on the last segment parameter
@ For outliers
@ For constraints
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Dynamic Programming Algorithms Recurrence on the last change

Std. Dynamic Programming

A numerical view

Cn = arg min {cost(r) + B|7|}

TEMn

@ Dynamic programming to compute Cj, (Fisher 1959, Bellman 1961, Jackson et al. 2005]

n
Cn = min Ci +min{d (X0} p+ B O(n?)
t<n ¢
~~ ~ ~~ ~~
bestup to t last segment penalty

G. Rigaill October 2019 11/45



Dynamic Programming Algorithms Recurrence on the last change

Std. Dynamic Programming - Generalization

No dependencies

@ Justified for many parametric and non-parametric models
[Auger and Lawrence 1989, Arlot et al. 2012, Cleynen and Lebarbier 2013, Celisse et al. 2018...]

n
» O(n?) if an efficient calculation of ming{>_~(X;,#)} is possible
t+1

» consistency, oracle inequality ...

@ Pruning: consider a subset of all {r < n} (PELT) iick eta. 2011

» O(n) if the number of “changepoints” is large (D* « n)
» O(n?) if no changepoints

G. Rigaill October 2019 12/45



What if ?

@ What if n > 10° and there are few changepoints ?

n
@ What if it is difficult to calculate ming{>_~(X;,0)} ?
t+1

@ What if there are dependencies in the model ?
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Dynamic Programming Algorithms
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Recurrence on the last segment parameter
A Viterbi-like DP algorithm

A functional view [Rigaill 2010-2015, Johsnon 2010-2013, Rote 2012, Maidstone et al. 2016]

7]

The overall cost is C = min 7|+ (Xi,0q)
= Y Y A060)
d=1 Td,1+1

A functional representation
@ conditioning on the last segment parameter

I7]

Coln) = min 3 Blrl+> Z (X; — 04)

6\7-\:” d=1 7g_q1+1

cost
700 705 710 715 720 725
L
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Dynamic Programming Algorithms Recurrence on the last segment parameter

A Viterbi-like DP with an infinite state space

Functional pruning

Cr1(j1) = min

“no change at n”

Cn(11)

min{ Co(s)} + 6

“a change at n”

+ (Xn+1 - N)z

@ Apply the update-rule per interval using simple calculus
@ Atworst 2n — 1 intervals.
@ Worst case complexity O(n?)
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Dynamic Programming Algorithms Recurrence on the last segment parameter

Changepoints as a continuous HMM ?

g @ 4 9
(%) (o

Continuous state space Z; in an interval of R
Chain rule (Xi|Z = p) ~ N(u,02)
Transition kernel k(x,y) o< ey + € Plyyy
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Dynamic Programming Algorithms Recurrence on the last segment parameter

Update of the functional cost visually
n=43 n=43+0.5" n=44
+(Xag — p)?

VS. Cy4 + discard 7 = 43

cost
I

710 715 720 725 730 735 74.0
L

710 715 720 725 730 735 74.0
L

700 705 710 715 720 725
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Recurrence on the last segment parameter
Fpop algorithm in practise
For n = 10° and varying D*

@ Quasi-linear on average -
(even without changepoints) P

@ About 4 seconds for n = 107

Good statistical properties
@ Model selection and consistency (vao 19ss, ..., Garreau and Ariot 2017]
@ Can be used to be optimise concave penalties
@ Top performer on the simulations of WBS ryziewicz 2014
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Dynamic Programming Algorithms Recurrence on the last segment parameter

Extensions of functional pruning

Models solved by Std. DP
@ Univariate exponential models (cieynen et ar. 2015)

@ But not (yet?) efficient for multivariate models ...

Models not solved by Std. DP
@ Non-convex losses to cope with outliers (rearmhead and Rigaill 2018]

n A
No “analytical solution” for >~ v(Xj, 04)
7+1

@ Models with dependencies maidstone et al. 2017, Hocking et al. 2018, Jewell et al. 2019]
Isotonic, peaks, train spikes . ..
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Dynamic Programming Algorithms
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Dynamic Programming Algorithms For outliers

Extension to Robust losses [Fearnhead and Rigaill 2018]

@ Robust convex loss for changepoints and sequential tests

[Huskova and Sen 1989; Huskova 1991; Huskova and Picek, 2005; Huskova, 2013]

Biweight-loss
o (x — 0)? if | x —0] < K
V(x:6) = { K2 otherwise

theta-x
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Dynamic Programming Algorithms For outliers

Functional cost va,, with the biweight loss

I

— il
Col) = {57+Z > x,,ed} AT
9|r| =p —

d= 1 7g_1+1

M TV
M T

with the biweight loss

e C,isstila piecewise polynomial function

@ The recurrence on the last segment
parameter works

@ Applied per interval using simple calculus
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R-Fpop for the biweight losses

Worst case complexity for the biweight loss
@ O(n®) time and O(n?) space J

But fast in practise

Biweight Ly

R-Fpop Fpop | PELT | BS | WBS | SmuceR
| n=10° | ~5sec | ~1sec | >10min | ~1sec | ~82sec | >> 10 min |
| | Exact | Heuristic |

@ More simulations in the paper
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Dynamic Programming Algorithms For constraints

Extensions of functional pruning (isotonic)

Isotonic [Hocking et al. 2018]

Y
—
. 04
01 <6 < 93 : 33 /
: 0>
01
( “no change at n”
Cn(ﬂ)
Copi(p) =min¢ + (Xnp1 — 1)
min {Cn(1)} + B
Wp
L “a change at n”

/
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Dynamic Programming Algorithms For constraints

A graph for complex patterns (an intuitive overview)
When does it work

@ S afinite set
@ A state spacein S x R
@ Describe transitions with a graph G

A graph of states and constraints G

@ A node (t,s) is associated to state s at time ¢
@ A transition from (¢, s) to (t + 1, s) is associated with

a linear constraints between u; and g1
a penalty
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Dynamic Programming Algorithms

Isotonic example (|S| = 1)

s 2108()
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Dynamic Programming Algorithms

Isotonic example (|S| = 1)

/

Ht=H4+1

7N

I/MZMM , 2 |Og(n)
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Dynamic Programming Algorithms

Up-Down pattern (S = {Up, Dw}, |S| = 2)

Peaks in Chlp-Seq [Hocking et al. 2018]

/

,U‘t l"l+1

/

Nt ltt+1

Mr<m+1 , 2log(n

r>#t+1 , 2 |og(n

G. Rigaill



Dynamic Programming Algorithms

Up-Down* pattern (S = {Up, Dw}, |S| = 2)

/Mt=#t+1 INt=#t+1
N VRN VRN

~ |I \ Il‘tS#[-H’ 2|Og(n) |I \

U
~ 14

/,urZ,um , 2 |Og(n)

@ IﬂrZ#t+1 .2 Iog(n)
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Dynamic Programming Algorithms For constraints

Same DP-algorithm for many graphs

A generic algorithm: gfpop

@ It takes as input the data and the graph

@ Some applications

for peaks [Hocking et al. 2017 and 2018]
for spike-trains ewel et al. 2019]

@ Generic implementation in developpement [runge etal. in prep]

Pattern loss n time
Up-Down s 106 | ~ 13s
Up-Down | Biweight | 108 | ~ 40s

https://github.com/vrunge/gfpop
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Dynamic Programming Algorithms For constraints

Segmentation models and exact DP algorithms

Models without dependencies

Recurssion on ©
For many models in O(n?)

Recursion on t

Inequality based pruning (PELT)

Recursion on p
Functional pruning (pDPA, FPOP

Models with dependencies



Estimation in the presence of outliers
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© Estimation in the presence of outliers
@ Consistency for the number and the position of the changes
@ Some copy number simulations



In the presence of outliers

@ L[, loss
@ Huber loss

@ Biweight loss
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Estimation in the presence of outliers Consistency for the number and the position of the changes
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Estimation in the presence of outliers Consistency for the number and the position of the changes

Some notations and assumptions

@ D~ true number of changepoints and 7 true changepoint

@ Leteq,...en be ii.d. noise random variables
@ Xi=0q4+¢; with 7 < 7 < 7441
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Estimation in the presence of outliers Consistency for the number and the position of the changes

Some notations and assumptions

Define M(6) = E[y(g;,6)] , with arg ming M(6) = 0

(A1)
There exists constant ¢; > 0 and ¢, > 0 such that

M(6) > M(0) + min{c16?, ¢}

This is true if M(0) as a positive second derivative around 0
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Estimation in the presence of outliers Consistency for the number and the position of the changes

Some notations and assumptions
Define

p = P[|€,|ZK]
o = E[f | lei] <K]

(A2)
K?(1 —2p) — (1 — p)o? >0

@ Assuming ¢; has a finite variance this is true if K > v/3E[?]

@ Assuming unimodality and a mode at 0 this is true if p < 2/5
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Estimation in the presence of outliers Consistency for the number and the position of the changes

Consistency of the biweight loss

Theorem

There exists constant C; and C, such that if 3, = Cylog(n)

bn = D*
T adip. min I = < Calog(m) | =

@ |dea of the proof:

» bound the decrease/increase in cost if we add or miss a change
» -~ is bounded and Lipschitz (with constant 2K)
» Bernstein’s inequality



Estimation in the presence of outliers
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© Estimation in the presence of outliers

@ Some copy number simulations
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Estimation in the presence of outliers Some copy number simulations

Simulating realistiC DNA COpy prOfileS [Pierre-Jean et al. 2014]
The jointseg package resample profiles with know truth

@ Various tumor fractions (1: easy, ... 0.3: difficult)
@ Known changepoint positions

Tumor Fraction = 0.5

T T
0 1000 2000 3000 4000

Index
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Significant improvement in DNA copy number data

@ We vary the value of the penalty (3) and count

» TP: at least a change in a window of 15 of a true change
» FP: the number of predicted changes minus the number of TPs

Tm. Frct =0.5
75 == Rout_L2
050 === BiWeight_3
'_
e Cusum
2.5
0.0-
0 1 2 3 4 5
FP

@ More simulations in the Paper... [Feamhead and Rigaill 2018]
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Conclusion

Segmentation models and exact DP algorithms

Models without dependencies

Recurssion on ©
For many models in O(n?)

Recursion on t

Inequality based pruning (PELT)

Recursion on p
Functional pruning (pDPA, FPOP)

Models with dependencies
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Conclusion

Algorithms minimizing a (penalized) cost

Models without dependencies
o GOOd Statistical propertieS [Boysen et al. 2009, Garreau et al. 2018...]
@ Computationally efficient: O(n?) or less

Models with dependencies and constraints
@ Statistical properties ?
@ Exact algorithms for some models

[Maidstone et al. 2017, Hocking et al. 2018, Jewell et al. 2019]

Heuristic optimization
@ Necessary to be less than quadratic for complex models
@ Some have good statistical properties!
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Conclusion

Thank you for listening!

@ Vincent RUNGE, Toby HOCKING, Guillaume BOURQUE,
Robert MAIDSTONE, Paul FEARNHEAD

@ A post-doctoral position is available: <guillem.rigaill@inra.fr>
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