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Context

Rising concerns about the impact of intercurrent events and missing data handling on treatment effect
estimation

ICH-E9 Guideline — harmonize the principles of statistical methodology applied to clinical trials (1998)

ICH-E9 Guideline Addendum on Estimands and sensitivity analysis — clarify the clinical trial objectives
(draft 2017, final version expected in 2019)
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Important definitions

Estimand: clarification of the trial objectives by taking into account intercurrent events

HYPOTHETICAL

— leads to a precise definition of the treatment effect

Intercurrent events: post-randomization events that may:
e affect the interpretation of the variable of interest (treatment discontinuation due to adverse events...)
e prevent the observation of the variable of interest (medical procedure...)
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Important definitions - nypothetical strategy
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Different steps

€ Intercurrent events handling methods on simulated data set — two simulation plans
1) evaluation of RBI methods: selection of 2 RBI methods
2) analyse of the impact of the sequencing order of imputation

9 Literature review on sensitivity analysis for these latter selected methods

Q Application of methods and sensitivity analysis on real data set

Produce recommendations for the use of intercurrent events handling methods
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Imputation methods

Handling intercurrent events — several hypothetical scenarios — use of imputation methods

/

LOCF (Last Observation Carried Forward), distinction regarding the
BOCF (Baseline Information Carried Forward), missingness mechanism
LMCF (Last Mean Carried Forward)
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Multiple imputation methods

» Standard multiple imputation — borrow values from the initially randomized treatment group (MAR)

* Reference-Based imputation — borrow values from the reference treatment group (placebo) (MNAR)

— Jump to Reference (J2R)

— Copy Increment Reference (CIR) the way the imputed values are
borrowed from the reference group

— Copy Reference (CR)

10
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RBI methods - theory
J2R CIR CR
—%— After deviation —%— After deviation —3$%— Before & after deviation

0 Control profile 0 Parallel control profile 0 Control profile

|
MARGINAL METHODS

starting from the benefit already obtained

CONDITIONAL METHOD

1
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R BI N |et h OdS - illustration (Source: Mallinckrodt and Lipkovich. Analyzing longitudinal clinical trial data: A practical guide)

J2R CIR

3
Visit

Drug arm Referencearm X  Observed/imputed value

Residuals /\ Imputation uncertainty

= Placebo arm

12
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R BI N |et h OdS - illustration (Source: Mallinckrodt and Lipkovich. Analyzing longitudinal clinical trial data: A practical guide)

CR

=B -
6
=7 - T T T T T
1 2 3 4 5
Visit
= Drug arm Referencearm X Observed/imputed value

— Placebo arm = Residuals /\ Imputation uncertainty

13
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MU'tip'G imputation sequential algorithm - Steps to impute one visit measurement

o 2] ©

non-informative MLE estimates on completers Random draw from marginal posterior of o?
priors —) 5 A2 P p— o>
,Ba o2 B,6 d

6 (5] (4] l

Save imputed value and residuals Random draw from priadlctlve posterior of |y Random draw from conditional posterior of ﬂ|a p
for the next sequential steps Ya ,Bd
N
N\
IMPUTED VALUE

m) reiterate 2) to 5) for each visit. For example for visit 2, the model for imputed value is:
Y, = baseline + therapys + imputed, /residualy + €

s reiterate this imputation algorithm to create 100 different imputed datasets "
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poo| Of a | | '|OO resu |ts MMRM with unstructured covariance matrix
Yijr = baseline; + therapy;; + (therapy * visit);ji + €k

= t

N——
: |
INCOMPLETE . . . o — ‘ ' statistical model on
DATA SET N°1  farand L LRI UG o J - e | ) ochimputed sets
) —
- Rubin’s Rule

combination of results
100 imputed data sets

SIMULATED REAL DATA SET

DATA SET

i | Pooled estimate
£ j and variance

m) imputation, statistical model application and pool of results for each of the scenarios and for the several simulations
15
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Simulation of a study in Major Depressive Disorder

power: 80%
expected difference: 3

2D 0
I' l expected standard deviation: 9.3
-~ 155VPATIENTS - . \' -

— § — O

\ PER ARM o o=

‘.o

ACTIVE DRUG 4 VISITS HAM-D17 score
AND PLACEBO longitudinal measure variable
V4, V5, V6, V7

Simulation of a longitudinal RCT, based on a real longitudinal antidepressant clinical trial

(James Roger, London School of Hygiene and Tropical Medecine - Missing Data - DIA working group, available at: http://missingdata.org.uk/. 2017.)
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Simulation of a study in Major Depressive Disorder

155 PATIENTS _ —

~
3 ~ PER ARM .°

ACTIVE DRUG 4 VISITS HAM-D17 score
AND PLACEBO longitudinal measure variable
V4, V5, V6, V7

Objective of the fictitious study: assess the efficacy of the active drug compared to placebo in the diminution of the
severity level of MDD after 7 weeks of treatment

Primary efficacy variable: change in HAM-D17 score from baseline at final visit (V7)

18
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Two simulation plans

o Analyse of the impact of two variants

%,

missing data distribution
10% to 50% between arms

In fine: choice of of the

Each combination: one scenario,

o m) Compare results (estimate, variance) Wb [GIEEREIRGE Tl R G
application of all methods

2nd simulation plan

Total: 8 scenarios

19



* =

~ smvien SIMULATION PLANS & APPLICATION

Principal results of the first simulation plan - presentation of scenarios

N° scenario IE distribution
— 50 simulations
Balanced Placebo % % % % %
00 X X l
N/ | —
i x x 3
| S——
02 X X
o
03 X X l
04 X X
40/02 X X ~_z
| S——
60 X X

20
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Principal results of the first simulation plan- effect on an increasing MD%
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= 8-
' ' ' ' ' ' ' ' ' ' 0.00-, ' ' ' '
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Missing data percentage Missing data percentage Missing data percentage
Methods BOCF -=- CIR -~ CR -e J2R - LMCF -+ LOCF -= MAR - — Complete data set
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Principal results of the first simulation plan- impact of distribution - 30%

1.00-

o 0° 11-
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Methods = BOCF - CIR -e- CR -e- J2R —e LMCF -+ LOCF - MAR
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First simulation plan main conclusions

J2R and CR are closer in estimated difference, variance and % significant simulations in the
majority of scenarios

°Ls

j— L J2R and CIR J and L 30% MD J

v
",z
222 delastatistique
ENSAI| 33 etderanase
S5 detinformation
S8
S
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Two simulation plans

@ Analyse of the impact of the sequencing order of imputation of IEs

@@ 0.0

DISJOINT SEQUENTIAL

One IE: one imputation method standard MI, J2R, CIR

Each combination of methods: one scenario [ 3 Recommandations with clinical relevance

Total: 6 scenarios

24
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Principal results of the second simulation plan - presentation of scenarios

N° scenario IE2 i i
—) 100 simulations

Standard Ml J2R CIR Standard Ml J2R CIR
0102 X X l
N/ N—/
0103 X X " "
| S——
0203 X X x
0201 X X l
0301 X X
_—
| S—
0302 X X
— | S———
N
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Principal results of the second simulation plan - final pooled estimate

Imputation order Estimate V7 % significant

disjoint -2.17 80%

standard MI&J2R 7 gtandard MI- IE2 12R 219 81%
0102

IE2 J2R - IET standard Ml -2.09 73%

disjoint -2.33 90%

standard MI&CIR |7 standard MI- IE2 CIR 231 87%
0103

IE2 CIR- IET standard M 228 86%

disjoint -1.86 61%

J2R & CIR ;
0203 IE132R - IE2 CIR 1.85 62%
IE1 CIR- IE2 J2R .85 60%

26
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= .
oA Recommendations

€) Effect of the MD % & disequilibrium of IE distribution between treatment arms

e Effect of the sequential order of imputation if presence of several IEs — need to define a clinical
relevant order of imputation if possible

28
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eYe Perspectives

€) Improvement axes:

CONCLUSION AND PERSPECTIVES
®

code optimization to reduce time complexity
go further in the sensitivity analysis

e Reuse of the codes
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Missingness mechanisms

MCAR: missing data of a variable does not depend on the variable itself and other study variables
MAR: missing data of a variable does not depend on the variable itself (conditional on study variables)

MNAR: missing data of a variable depends on the variable itself (conditional on study variables)

B) VAR and MNAR mechanisms
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Statistical model - MMrRM model

Model: change;jr = baseline; + therapy;; + (therapy * visit);ji + €k < change = X+ &

Hypotheses: & ~ N(0,,X)
change ~ N(XB,X)

m) Use of LS means: obtain the estimated treatment difference
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Multiple imputation sequential algorithm - Bayesian predictive regression model

Monotone missing data pattern: sequential imputation

1) Impute values at V4: changes = basval + therapy,

2)  Impute values at V5: changes = basval + therapys + imputedy /residualy

3) Impute values at V6: changes = basval + therapys + imputedy /residualy + imputed; /residuals

4) Impute values at V7: change; = basval + therapys + imputed, /residualy+. . . +imputeds /residualg

m) differences between MNAR methods: variable used for the imputation of visit (t+1)
e J2R and CIR: previous residuals
e CR: previous imputed values
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MU'tip'G imputation sequential algorithm - Steps to impute one visit measurement

o 2] ©

non-informative OLS estimates on completers Random draw from marginal posterior ofo?
priors —) 5 A2 P p— o>
,Ba o2 B,6 d

6 (5] (4] l

. . . ~ g . 2
Save imputed value and residuals Random draw from priadlctlve posterior of |y Random draw from conditional posterior of 18|0'd
for the next sequential steps Ya ,Bd
IMPUTED VALUE

m) reiterate 2) to 5) for each visit (for exemple for V5 visit, the model for imputed value is:
changes = basval + therapys + imputedy /residualy

s reiterate this imputation algorithm to create 100 different imputed datasets
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Pool Of all 100 results MMRM with unstructured covariance matrix

change;ji = baseline; + therapy;; + (therapy * visit);jx + €k

= t

N——
: |
INCOMPLETE . . . o — ‘ ' statistical model on
DATA SET N°1  farand L LRI UG o J - e | ) ochimputed sets
) —
- Rubin’s Rule

combination of results
100 imputed data sets

SIMULATED REAL DATA SET

DATA SET

i | Pooled estimate
£ j and variance

m) imputation, statistical model application and pool of results for each of the scenarios and for the several simulations
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Rubin’s Rule - pooling of results

. . : a1 m g
Pooling of the m different estimates: 6 = E(Zizl 97,)

Several steps to pool the estimated variance: Vj;; = % (Zm SE?)
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Delta-adjustment theory

Completers placebo Deviant placebo patients
patients at visit j at visit j

TR een RIS

add 8 to the imputed values
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g Literature review on sensitivity analysis

Use of an intern Servier research tool (R Shiny app)
No concluding findings because recent concerns & subject

Final version of the ICH-E9 Addendum about sensitivity analysis not released yet

- TIPPING POINT
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Application of all selected imputation methods - effect on the estimate

1

o Estimate (se i 5 :
o o "
p-value .

1

2 N

S SENSITIVITY ANALYSIS ON REAL DATA SET

0.47 (0.82) LOCF- .
e 0.57 i
2= LMCF - 3¢ :

e -1.38 (1.04) g :
0.18 £ !

247 (1.06) g f = -

y 47 (1. Z ;
© 0.022 = :
£ CR- a3 1

1

s -2.83 (117) ;
0.017 . :

1

1

£ 26 % MD aoce - ;

/ 1

4 7 3 > ) !

Primary efficacy endpoint estimate and confidence interval
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Tipping point theory:- objectives

Aim: assess how severe departures from the initial assumption must be in order to overturn conclusions
of the primary analysis

Helps to determine the robustness of results
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Tlpplng point theo I'Y- based on delta-adjustment method

DELTA - penalize the chosen treatment arm imputation by a mean value (e.g. 1) — DELTA
SORIBERIE BEY - apply the statistical model and the pool of results over the different imputed sets

apply progressive delta-adjustment with a delta value: from 0 to the TIPPING POINT

TIPPING POINT - TIPPING POINT: when the results are overturned — loss of significance
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Tlpplng point results - find the tipping point for this study
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Primary efficacy endpoint estimate and confidence interval



