A Bayesian approach for event predictions in
clinical trials with time-to-event outcomes
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In event driven trials, statistical analyses are planned at a pre specified number of events (X)
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Context
In event driven trials, statistical analyses are planned at a pre specified number of events (X)

Main objective: predict the date of the X" event with an acceptable prediction interval

| 3 Identified methods:

 Emilia Bagiella and Daniel F Heitjan. Predicting analysis times Iin randomized clinical trials.
Statistics in medicine, 20(14):2055-2063, 2001

 Gui-shuang Ying and Daniel F Heitjan. Weibull prediction of event times in clinical trials.
Pharmaceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry, 7(2):
107-120, 2008

« Bayesian approach proposed by Servier
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Algorithm

Model 1:
%ﬂﬂ@@ Time-to-enroliment
Model 2:
Population at the cut-off Time-to-event

Patient waliting for recruitment

Model 3:
Time-to-censorship

'H' Patient still in follow-up

'H‘ Patient who have experienced the event
| , c X 1,000
'H' Drop-out / Lost to follow-up patient



3 - Modelisation




Modelisation

e

/7 N\
( MDL 1) Ime-to-enrollment

\__/

S

/7 N\
{ MDL 2 \ Time-to-event
\ |
\_ _/

-
VA
II\/IDLS\ Time-to-censorship
\ /
\_ _/




Mod_elisation

Time-to-enrollment

Time-to-enrollment ~ HPP (//t)

Statistical model: iat|p ~ Exp (u)
Prior: u~1I (aﬂ, bﬂ)
Posterior: pliat ~T (N (2.) + ay 1.+ bﬂ>

Notations:
lat: inter-arrival times = time elapsed between the recruitment of two consecutive patients

t.. time of the cut-off (enrollment period observed)
N (tc): number of patients enrolled by the time of the cut-off



Mod_elisation

Time-to-event & Time-to-censorship

Method Bagiella & Heitjan
Likelihood X;|4; ~ Exp (%‘)
Prior distribution A~ T <Aj, Bj>

Calculation of the

posterior distribution Analytical

Notations:
Xj: time-to-event (resp. time-to-censorship) in treatment arm J
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Time-to-event & Time-to-censorship

Method Bagiella & Heitjan Ying & Heitjan
Likelihood X;| 4; ~ Exp (ij) X;| pj, 4 ~ Weibull <pj’ /1]-)

'Oj ~ 1 <aﬂj’ bﬂj)

Prior distribution A~ 1 <Aj, Bj>
/1] ~ F (d/’{j, b/1]>

Calculation of the

posterior distribution Analytical MCMC

Notations:
Xj: time-to-event (resp. time-to-censorship) in treatment arm J



Mod_eli§_a_tion

Time-to-event & Time-to-censorship

Method Bagiella & Reitjan Ying & Helitjan Servier
Likelihood X%~ Exp (%) X, 9y 4y ~ Weibull (p;, ;) X|p. A ~ Weibull (p. 1)
pi~ b <apf’ bpf‘) p~T (“p’ bp)
Prior distribution 4 ~T(4,5) ) = dye ZBX
/1] ~ F (Clﬂj, b/1]> /10 ~ F (dﬁ, bﬂ)

Calculation of the

posterior distribution Analytical MCMC MCMC

Notations:
Xj: time-to-event (resp. time-to-censorship) in treatment arm J

X i™ covariate

f3:: parameter associated to the i™

covariate



Mod_elisation

Lag

Patient 1
Patient 2
: cut-off
| Randomisation e Visit’s times quthorized | ag of report
X Censorship without lag X Censorship with lag (e.g. 30 days)

Laqg: authorized time for the investigator to report the information in the database



Methods’ comparison

Source Distribution Treatment Lag Covariates  Implementation
Bagiella & Heitjan Exponential Analytical
Ying & Heitjan Weibull MCMC!
Servier Weibull MCMC

1 Two implementation approaches (Sampling Importance Resampling and Hamiltonian Monte Carlo)
have presented similar results (all other things being equal) on a set of simulated datasets.
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Prediction

Time-to-event & Time-to-censorship

Method Sample Predictive
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Time-to-event & Time-to-censorship
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Method Sample Predictive
Bagiella & Heitjan 2 X, ~ Exp (77
Ying & Heitjan PJP , /1}9 X; ~ Weibull < Jp ﬂjp>

Servier pr, ﬂg,ﬂf’ X ~ Weibull <pp, /1(1)’6 Zﬂ{%)
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Time-to-event & Time-to-censorship
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Method Sample Predictive Inverse Transform Sampling
Bagiella & Heitjan 2 X, ~ Exp (77
Ying & Heitjan PJP , /1}9 X; ~ Weibull < Jp ﬂjp>

Servier pr, ﬂg,ﬂf’ X ~ Weibull <pp, /1(1)’6 Zﬂ{%)



Prgdiction

Inverse Transform Sampling

S (1)
1A / S(1)=e™"
S(#) |—m——————— . Sampleg ~ U |0,5 (tf“)
: . Calculates ™! (q) > ¢t
q ...................................................................... .
> fime
0 i 5 (q)

observed follow-up prediction period
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Case Study

" Phase |

Phase Il in oncology
Recruitment: 153 patients (FVFP: 29/04/2016 — 12 months enrollment)
Target: 100 events (completion target event : 15/01/2018)

Primary outcome: Progression Free Survival

Design hypotheses:  median,,, = 9.1 months, HR = 0.77

DJrop-out rate: 1 % per year



Case Study

Phase |

Design hypothesis: exponential distribution supposed for events so ki (£) = Apt?~! = 4
Proposition: p~11(1,1) = (,0) =1 \/(p) =1

Gamma distribution
(scale notation)

a—1

() = ———e7
TO=5r@°

(X)) =af et VX)=ap’




Case Study

" Phase |

Hypothesis: A~ 1 (C,D)represents the speed of events’ occurence

log(D)\?  log (2 log (2
g @\ _log@ L lg@
A ¢ A median

median = (

y
P (1 log (2) ) - (4 = log(.2) V(i) = ( log (2) )

"median median



Number of events
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Case Study

N Pha

Prediction of Progression-Free Survival

se |

Bayesian Modelling

CL

NU

t-off: 29/08/2017
mber of events: 57

Date at which 100 events will be observed :
Probability of 50% : 2017-12-22
Probability of 70% : 2018-01-12
Probability of 90% : 2018-02-18
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Difference from 2018-05-09 (in days)

Case Study

" Phase |
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Bagiella & Heitjan Approach
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Ying & Heitjan Approach
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Results & Comparison
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Results & Comparison

Unblinded / Blinded

No interest in separating data by treatment arm in 2 different models

More parameters to estimate in Weibull models — pooling treatment arms may improve the
estimations




Results & Comparison

Lag

With or without lag, good predictions with Welbull models

Early predictions Mid-predictions Late predictions

(cut-off 50%) (cut-off 75%)) (cut-off 90%))
Exponential models mixed no difference no difference
Weibull models more precise without lag mixed no difference

Counter intuitive results: more investigations are needed



6 - Conclusion




Conclusion

Recommendations

Weibull

Best results when there are enough events in database

Blinded

Pooling data increases the number of events in the model

Lag?

Important on case studies but inefficient in simulations




Thanks for your attention




Weibull_distribution

Density: f() = AptP~le=™ = h(£) S (¢)
Survival: SH=e ™ =1=F(®)
Hazard rate: h(t) = dptP~!
1
log (2) \*
Median: median = ( Og/l( )>
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Simulation Study

~ Models
Distribution Treatment Lag Implementation
Exponential Unblindea Analytical
Exponential Unblinded Analytical Bagiella & Heitjan
Exponential Blinded Analytical
Exponential Blinded Analytical
Weibull Unblinded Hamiltonian Monte Carlo
Weibull Unblinded Hamiltonian Monte Carlo Ying & Heitjan
Weibull Blinded Hamiltonian Monte Carlo Servier Approach

Weibull Blinded Hamiltonian Monte Carlo
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Density
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-~~~ Mean lambda prior: 0.00219
- Mean lambda post.: 0.00052
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Case Study

Parameters calcul

median,,,,

- ' - median,.,,
Example: i — median,., + median,,,, _  HR U 315 days
2 2
log (2
=) =289 _ 60022
median

Scale notation: 4 ~ I'(1,0.0022)

1
Rate notation: A ~ 1" { 1, =1 (1,455)
0.0022



Case Study

" Phase Il

Phase Il in oncology
Recruitment: 320 patients (FVFP: 20/04/2011)
Target: 216 events (completion target event : 09/05/2018)

Primary outcome: Progression Free Survival

Design hypotheses:  median,,,; = 2.8 months, HR = 0.65

Drop-out rate:



09/09/2016

123

Cut-off

Phase |l

Case Study

Number of events

Prediction of Progression-Free Survival

Bayesian Modelling

Probability of 70% : 2018-06-23
Probability of 90% : 2018-08-31

Date atwhich 216 events will he observed :
Probability of 50% : 2018-05-11
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Difference from 2018-05-09 (in days)

-180 -
-210 -

Case Study

Phase Il - Ying & Heitjan Algorithm

450 -
420 -
390 -
360 -
330 -
300 -
270 -
240 -
210 -
180 -
150 -
120 -

90 -
) Probability
60 50

=== === mmmmmmmm e e e e e em e em e e e e e m e mem e e mem e m e m e m e memmmmmeEm e mm e e meEmmmmmmmemmemEmEEmmmmmmeEemmEmmEmmmmemmmmmmmmmmmmem—m=e=====
80

0 -
70

B 1
60

-60 -
50

-90 -

-120 -
-150 -

l

[ |

-240 - e

270 - ——
-300 -
-330 -
-360 -
-390 -
-420 -
-450 -

2016-09-09 2017-01-06 2017-03-03 2017-04-14 2017-08-18 2017-11-10
Date of the prediction




Difference from 2018-05-09 (in days)

Case Study

Phase Il — Servier Approach
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