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Mathematical epidemiology of infectious diseases usually involves describing the fl ow 
of individuals between mutually exclusive infection states. One of the key parameters 
describing the transition from the susceptible to the infected class is the hazard of 
infection, oft en referred to as the force of infection. Th e force of infection refl ects the 
degree of contact with potential for transmission between infected and susceptible 
individuals. Th e mathematical relation between the force of infection and eff ective 
contact patterns is generally assumed to be subjected to the mass action principle, which 
yields the necessary information to estimate the basic reproduction number, another 
key parameter in infectious disease epidemiology.

It is within this context that the Center for Statistics (CenStat, I-Biostat, Hasselt Uni-
versity) and the Centre for the Evaluation of Vaccination and the Centre for Health 
Economic Research and Modelling Infectious Diseases (CEV, CHERMID, Vaccine and 
Infectious Disease Institute, University of Antwerp) have collaborated over the past 15 
years. Th is book demonstrates the past and current research activities of these institutes 
and can be considered to be a milestone in this collaboration.

Th is book is focused on the application of modern statistical methods and models to 
estimate infectious disease parameters. We want to provide the readers with soft ware 
guidance, such as R packages, and with data, as far as they can be made publicly available.
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Hens et al. (2012), Held et al. (2019)
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Introduction

Serological data

Serological data
cross-sectional set of residual blood samples (hospital laboratories,
blood donors, . . . )

tested for infection-specific IgG antibodies using ELISA

antibody level > cut-off value → seropositive
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Introduction

Serological data

Setting the scene: varicella zoster virus

varicella zoster virus (VZV)

clinical primary infection → varicella
presentation reactivation → herpes zoster

transmission direct or aerosol

infectious period about 7 days

vaccination no active immunisation
in most of Europe

serological BE (2002)
surveys
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Introduction

Estimation framework

Estimation framework

compartmental models to describe infectious disease dynamics

simple example:

MSIR model

MA-protected
(months)mM
?
µ

-α

susceptible
(years)mS
?
µ

-λ

infected
(days)mI
?
µ

-
γ

recovered
(lifelong)mR
?
µ

dynamical system over age a and time t
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Introduction

Estimation framework

Estimation framework

MSIR model and variants can be used to analyze serological surveys

estimate:

age-specific force of infection

basic reproduction number R0

critical immunization level

. . .

plan and monitor vaccination programmes or intervention strategies

often requires estimation of age-dependent transmission rates

→ essential to determine the pattern of person-to-person spread of an
infection in a large population

requires making assumptions
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Introduction

Estimation framework

The MSIR model

Compartments and time scales.

Each differential equation represent the change (over time and age)
in the compartment.





∂M(a,t)
∂a + ∂M(a,t)

∂t = −α(a)M(a, t),

∂S(a,t)
∂a + ∂S(a,t)

∂t = α(a)M(a, t)− (λ(a, t) + µ(a))S(a, t),

∂I(a,t)
∂a + ∂I(a,t)

∂t = λ(a, t)S(a, t)− (ν + µ(a))I(a, t),

∂R(a,t)
∂a + ∂R(a,t)

∂t = νI(a, t)− µ(a)R(a, t),

where N(a, t) =M(a, t) + S(a, t) + I(a, t) +R(a, t) and
M(0, T ) = B(t), the number of births all susceptible to infection.
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Introduction

Estimation framework

The Lexis diagram
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Introduction

Estimation framework

MSIR model

MSIR model: assuming endemic equilibrium




dM(a)
da = −{α(a) + µ(a)}M(a),

dS(a)
da = α(a)M(a)− {λ(a) + µ(a)}S(a),

dI(a)
da = λ(a)S(a)− {γ(a) + µ(a)}I(a),
dR(a)
da = γ(a)I(a)− µ(a)R(a)

µ(a) = mortality rate

α(a) = rate of losing maternal antibodies

λ(a) = rate at which a susceptible of age a acquires infection
→ force of infection (FOI)

γ(a) = recovery rate
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Introduction

Estimation framework

Mass action principle

MAP

λ(a) = D

∫ ∞

0

β(a, a′)λ(a′)S(a′)da′

β(a, a′) = transmission rate, i.e. per capita rate at which an
individual of age a′ makes an effective contact with a person of age
a, per year

D = mean duration of infectiousness
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Introduction

Estimation framework

Estimation from serological data

solve MSIR ODEs and derive expressions for

fraction of susceptibles s(a) → solve MAP:

λ(a) = D

∫ ∞

0

β(a, a′)λ(a′)S(a′)da′

fraction of seropositives r(a) → evaluate loglikelihood:

`` =
n∑

i=1

w̃i

{
yi log[r(ai)] + (1− yi) log[1− r(ai)]

}
yi =

{
1, if seropositive

0, if seronegative



The statistical analysis of serological and social contact data to inform infectious disease modelling 15/67

Introduction

Estimation framework

Estimation from serological data

assume type I maternal antibodies → age A

MSIR - fraction of susceptibles:

s(a) = exp

(
−
∫ a

A

λ(u)du

)
≈ 1− r(a)

move to discrete age framework → solve MAP iteratively

β(a, a′) = βij if a ∈ [a[i], a[i+1]) and a′ ∈ [a[j], a[j+1])

βij ‘Who-Acquires-Infection-From-Whom’ (WAIFW) matrix
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Introduction

Estimation framework

Estimation from serological data

estimate parameters determining βij from serological data using
ML-estimation

estimate R0 = dominant eigenvalue of the next generation matrix
with elements:

D

(∫ a[i+1]

a[i]

N(a)da

)
βij
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Introduction

The traditional ‘WAIFW’ approach

Traditional approach
Anderson and May (1992): mixing patterns

impose mixing pattern on βij

constrain # distinct elements

based on prior knowledge of social mixing behaviour

age age age age
class 1 class 2 class 3 class 4
↓ ↓ ↓ ↓

age class 1→ β1 β4 β4 β4
age class 2→ β4 β2 β4 β4
age class 3→ β4 β4 β3 β4
age class 4→ β4 β4 β4 β4

age age age age
class 1 class 2 class 3 class 4
↓ ↓ ↓ ↓

age class 1→ β1 β1 β3 β4
age class 2→ β1 β2 β3 β4
age class 3→ β3 β3 β3 β4
age class 4→ β4 β4 β4 β4
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Introduction

The traditional ‘WAIFW’ approach

WAIFW approach applied to VZV

previously used WAIFW structures for VZV: 6 age-categories:

W1 =


β1 β6 β6 β6 β6 β6
β6 β2 β6 β6 β6 β6
β6 β6 β3 β6 β6 β6
β6 β6 β6 β4 β6 β6
β6 β6 β6 β6 β5 β6
β6 β6 β6 β6 β6 β6

W2 =


β1 β1 β3 β4 β5 β6
β1 β2 β3 β4 β5 β6
β3 β3 β3 β4 β5 β6
β4 β4 β4 β4 β5 β6
β5 β5 β5 β5 β5 β6
β6 β6 β6 β6 β6 β6



W3 =


β1 β1 β1 β1 β1 β1
β2 β2 β2 β2 β2 β2
β3 β3 β3 β3 β3 β3
β4 β4 β4 β4 β4 β4
β5 β5 β5 β5 β5 β5
β6 β6 β6 β6 β6 β6

W4 =


β1 β6 β6 β6 β6 β6
β6 β2 β6 β6 β6 β6
β6 β6 β3 β6 β6 β6
β6 β6 β6 β4 β6 β6
β6 β6 β6 β6 β5 β6
β6 β6 β6 β6 β6 β5



issues:

direct estimation or model based - regular matrices

selection of best WAIFW-matrix using AIC
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Introduction

The traditional ‘WAIFW’ approach

WAIFW approach applied to VZV

with (Belgian situation)

N = 9 943 749, L = 80, D = 7/365

age categories [0.5,2), [2,6), [6,12), [12,19), [19,31), [31,80)

using direct estimation based on binomial likelihood

Model R̂0 AIC
W1 8.831 1375.7
W2 3.512 1372.8
W3 4.213 1372.8
W4 8.807 1375.7
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Introduction

The traditional ‘WAIFW’ approach

WAIFW approach applied to VZV

Farrington and Whitaker (2005): continuous surface

β(a, a′) = κ(γ(u)× b(v|u) + δ),

where

γ(u;µ, ν) = c−1uν−1 exp

(
− νu√

2µ

)
,

b(v|u;α, β) =
(u+ v)α−1(u− v)β−1

uα+β−2
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Introduction

The traditional ‘WAIFW’ approach

A Continuous WAIFW Applied to VZV
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Introduction

The traditional ‘WAIFW’ approach

Traditional approach

Anderson and May (1992): mixing patterns

→ disadvantages:

low dimensional matrices

non-realistic discontinuities

choice age classes: ad hoc

Farrington & Whitaker (2005): continuous contact surface

both methods rely on strong parametric assumptions

Wallinga et al. (2006): use data on social contacts to inform
estimation of age-dependent transmission rates
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Estimating inf. disease parameters using serological and social contact data

Outline
1 Introduction

Serological data
Estimation framework
The traditional ‘WAIFW’ approach

2 Estimating inf. disease parameters using serological and social contact data
The social contact hypothesis
Dimensions of uncertainty
Application to VZV

3 An excursion to questions that can be answered by using these data
Examples of use and analysis of social contact data
Examples of use and analysis of serological data

4 Using frailty models for the analysis of multivariate serological data
Setting the scene
The mass action principle
Bivariate correlated frailty models
Infection processes
Data
Discussion & conclusion
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Estimating inf. disease parameters using serological and social contact data

Social contact approach

for infections transmitted primarily through non-sexual social contacts:

rates of conversational/physical contact

l relation?

transmission rates β(a, a′) ⇔ WAIFW-matrix



The statistical analysis of serological and social contact data to inform infectious disease modelling 25/67

Estimating inf. disease parameters using serological and social contact data

The social contact hypothesis

Social contact hypothesis

Social contact hypothesis (Wallinga et al., 2006)

β(a, a′)

�
��	

q

@
@@R

c(a, a′)·
‖ ‖

proportionality constant contact rate

��	 @@Restimation
serological survey social contact survey
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Estimating inf. disease parameters using serological and social contact data

The social contact hypothesis

Social contact survey

Alternative approach:

Using data on social contacts to estimate age-specific transmission
parameters for respiratory-spread infectious agents.

Objectives

Disentangle contact behaviour
from transmission process

Get insights in predictiveness of
social contact data

Get new insights in the
transmission process

Edmunds et al. (1997)

Beutels et al. (2006)

Mossong et al. (2008)

Hens et al. (2009)

McCaw et al. (2010)

Horby et al. (2011)

. . .
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Estimating inf. disease parameters using serological and social contact data

The social contact hypothesis

EU mixing patterns

common structure

note the
converging
off-diagonals:
parents get older
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Estimating inf. disease parameters using serological and social contact data

Dimensions of uncertainty

Dimensions of uncertainty

Social contact hypothesis (Wallinga et al., 2006)

β(a, a′)

�
��	

q

@
@@R

c(a, a′)·

model selection uncertainty:

1 c(a, a′)→ what type of contact?

2 q = constant → assumption too strong?
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Estimating inf. disease parameters using serological and social contact data

Application to VZV

Applied to VZV in Belgium

modeling assumptions:

MSIR compartmental model (lifelong immunity)

endemic equilibrium

type I maternal antibodies and type I mortality

ML-estimation: q̂ → R̂0
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Estimating inf. disease parameters using serological and social contact data

Application to VZV

Type of contact?

select types of contact with high transmission potential for VZV

which one induces the best fit to the observed serological profile?
model parameter type of contact
C1 q1 all contacts
C2 q2 close contacts
C3 q3 close contacts > 15 minutes
C4 q4 close contacts and non-close contacts > 1 hour
C5 q5 close contacts > 15 minutes and non-close contacts > 1 hour

model q̂k 95% CI R̂0 95% CI AIC
C1 0.132 [0.103,0.175] 15.69 [12.34,21.41] 1386.618
C2 0.160 [0.126,0.208] 10.24 [8.21,13.68] 1379.581
C3 0.173 [0.133,0.221] 8.68 [6.89,11.34] 1374.958
C4 0.145 [0.113,0.188] 11.73 [9.41,15.95] 1380.354
C5 0.156 [0.119,0.204] 10.40 [8.05,14.10] 1376.068
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Estimating inf. disease parameters using serological and social contact data

Application to VZV

q = constant?

q might depend on age-specific characteristics related to
susceptibility and infectiousness

contacts reported in diaries are just proxies of at-risk events by
which infection can be transmitted

age-dependent proportionality

β(a, a′)

�
��	

q(a, a′)

@
@@R

c(a, a′)·
‖ ‖

proportionality factor contact rate

various options: back to issues with identifiability → model averaging
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Estimating inf. disease parameters using serological and social contact data

Application to VZV

Multi-model inference
Goeyvaerts et al. (2010):

•
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•
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Estimating inf. disease parameters using serological and social contact data

Application to VZV

Summary

Dimensions of uncertainty:

type of contact underlying transmission of disease

parametric model relating the contact rates to the transmission rates
(e.g. constant/age-dependent proportionality)

model selection uncertainty: different models may induce similar fit,
while entailing different estimates of R0

to overcome this problem: multi-model inference
→ model averaged estimate for R0

VZV in Belgium: improvement of fit by modeling transmission as
the product of two age-specific variables: the age-specific contact
rate and an age-specific proportionality factor
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An excursion to questions that can be answered by using these data

Outline
1 Introduction

Serological data
Estimation framework
The traditional ‘WAIFW’ approach

2 Estimating inf. disease parameters using serological and social contact data
The social contact hypothesis
Dimensions of uncertainty
Application to VZV

3 An excursion to questions that can be answered by using these data
Examples of use and analysis of social contact data
Examples of use and analysis of serological data

4 Using frailty models for the analysis of multivariate serological data
Setting the scene
The mass action principle
Bivariate correlated frailty models
Infection processes
Data
Discussion & conclusion
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An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

A historical perspective

Social contacts as proxies of transmission events of airborne
infections

Rapoport and Horvath (1961): first social surveys to construct
networks for studying the spread of infection

Several studies have been conducted since: Edmunds et al. (1997);
Wallinga et al. (2006); Mossong et al. (2008); Salathé et al. (2010);
Read et al. (2012); Danon et al. (2013); Kucharski et al. (2014);
Kwok et al. (2014); Eames et al. (2015); Dodd et al. (2016), . . .

Wallinga et al. (2006): conversational contacts predictive for
age-specific proportion of persons immune against mumps in Utrecht
in 1986 and against pandemic influenza in Cleveland in 1957.

social contact hypothesis: q(a, a′) = q
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An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Systematic review

Hoang et al. (2019):

diary-based approach & face-to-face interviews

data sharing initiative: www.socialcontactdata.org &
socialmixr-package (R software)
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An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Estimating contact rates

General guidelines

Hens and Wallinga (Wiley, StatsRef 2019)

Wallinga, van de Kassteele and Hens (HIDDA, 2019)

Smoothing approaches

van de Kassteele et al. (2017): smoothing INLA

Camarda and Hens (2013), Vandendijck et al. (2018): clever choice
of axes to smooth over
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An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Behavioural change: regular holiday periods

Luca et al. (2018):

Holiday periods have a significant impact on transmission

Organising holiday periods could mitigate the transmission of
infectious diseases



The statistical analysis of serological and social contact data to inform infectious disease modelling 39/67

An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Behavioural change: illness

Santermans et al. (2017):

Illness has an impact on activity (contacts & mobility)

Different disease dynamics
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An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Inferring networks from social contact data

Goeyvaerts et al. (2018):

Household members do not mix at random

Combining household and egocentric data proves to be useful
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An excursion to questions that can be answered by using these data

Examples of use and analysis of social contact data

Outline
1 Introduction

Serological data
Estimation framework
The traditional ‘WAIFW’ approach

2 Estimating inf. disease parameters using serological and social contact data
The social contact hypothesis
Dimensions of uncertainty
Application to VZV

3 An excursion to questions that can be answered by using these data
Examples of use and analysis of social contact data
Examples of use and analysis of serological data

4 Using frailty models for the analysis of multivariate serological data
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Examples of use and analysis of serological data

Mixture modelling avoiding the use of thresholds

Bollaerts et al. (2012)

Outperforms using sensitivity and specificity

The force of infection underestimated using dichotomous data
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Examples of use and analysis of serological data

Back calculation

Borremans et al. (2016)

Back calculation requires knowing the response after
vaccination/infection

When known can improve incidence estimation
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Examples of use and analysis of serological data

Inferring immunological processes from serological data

Goeyvaerts et al. (2011)

Model structure forensics

Discerning between models will not always be possible - model
averaging
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Examples of use and analysis of serological data

Testing the social contact hypothesis

Santermans et al. (2015)

Relying on the effective reproduction number as a sanity check

Acknowledging data selection uncertainty
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Examples of use and analysis of serological data

Estimating MMR vaccine coverage

Wood et al. (2015)

Exploiting the multivariate nature of MMR seroepidemiology and
trivalent vaccine

Important to acknowledge time-varying vaccine-induced antibody
levels



The statistical analysis of serological and social contact data to inform infectious disease modelling 47/67

Using frailty models for the analysis of multivariate serological data

Outline
1 Introduction

Serological data
Estimation framework
The traditional ‘WAIFW’ approach

2 Estimating inf. disease parameters using serological and social contact data
The social contact hypothesis
Dimensions of uncertainty
Application to VZV

3 An excursion to questions that can be answered by using these data
Examples of use and analysis of social contact data
Examples of use and analysis of serological data

4 Using frailty models for the analysis of multivariate serological data
Setting the scene
The mass action principle
Bivariate correlated frailty models
Infection processes
Data
Discussion & conclusion



The statistical analysis of serological and social contact data to inform infectious disease modelling 48/67

Using frailty models for the analysis of multivariate serological data

Setting the scene

Introduction

Airborne infections (influenza, measles, varicella, . . . )

Transmission parameters estimated from serological data, e.g. force
of infection λ(a), basic reproduction number R0, . . .

Force of infection relates to transmission rates through the so-called
“mass action principle”; infectious and susceptible individuals are
assumed to mix completely in the population

Estimation of (age-dependent) transmission rates: social mixing
patterns

Goal

Incorporating individual heterogeneity in acquisition of infections in the
mass action principle
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The mass action principle

Introduction: the mass action principle

Homogeneous mixing

Force of infection:
λ = βI∗

β: transmission rate

I∗: number of infected
individuals

R0 = βND is the basic
reproduction number
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The mass action principle

Introduction: mass action principle

Homogeneous mixing

Observed heterogeneity

Age-heterogeneity

Other sources of
heterogeneity
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Mass action principle - Heterogeneous mixing

Age-dependent force of infection λ(a) obtained by
(Anderson and May, 1991):

λ(a) = ND

∫ ∞

0

β(a, a′)λ(a′)S(a′)φ(a′)da′

where

β(a, a′): effective contact function

S(a′): proportion of susceptible individuals of age a′

φ(a′): is the age-specific population density

Note that NDλ(a′)S(a′)φ(a′) ≈ I∗(a′).
Other types of observed heterogeneity, e.g. gender: focus on age
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Mass action principle - Individual heterogeneity

Individuals differ in

propensity to make contacts with others

susceptibility to infection

infectiousness after infection

Sources of heterogeneity are typically unobserved or latent

see e.g. Coutinho et al. (1999) & Farrington et al. (2001)
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The mass action principle

Mass action principle

Homogeneous mixing

Observed heterogeneity

Age-heterogeneity

Other sources of
heterogeneity

Unobserved
heterogeneity

Activity levels

Susceptibility

Infectiousness

and/or
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Mass action principle - Heterogeneity in Activity Levels

Conditional force of infection λ(a, Z) obtained by

λ(a, Z) = ND

∫ ∞

0

∫ ∞

0

β(a, Z; a′, Z ′)λ(a′, Z ′)S(a′|Z ′)φ(a′)f(Z ′)dZ ′da

where

Z and Z′: individual frailty terms distributed according to f(·)
β(a, Z; a′, Z′): augmented effective contact function

β(a, Z; a′, Z′) = Zβ0(a, a
′)Z′: proportionality assumption

D: average infectious period

N : population size

Shared frailty interpretation for infections sharing transmission routes

Basic reproduction number R0:
{1 + Var(Z)} × dom. eigenval. of β∗0(a, a

′) = NDφ(a)β0(a, a
′)
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Mass action principle

Homogeneous mixing

Observed heterogeneity

Age-heterogeneity

Other sources of
heterogeneity

Unobserved
heterogeneity

Activity levels

Susceptibility

Infectiousness

and/or
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Heterogeneity in Susceptibility and Infectiousness

Heterogeneity in susceptibility (Z1) and infectiousness (Z2):
physiological characteristics of infection process

Hazard of infection λ(a, Z1, Z2) = Z1λ0(a) implies frailty model
w.r.t. heterogeneity in susceptibility only

Basic reproduction number R0:
{1 + Cov(Z1, Z2)} × dominant eigenvalue of β∗0(a, a

′)
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The mass action principle

Combined model

Sources of heterogeneity combined in one frailty model

Augmented effective contact function

β(a, Z, Z1, Z2; a
′, Z ′, Z ′1, Z

′
2) = ZZ1β0(a, a

′)Z ′Z ′2

Force of infection: (multiplicative) frailty model w.r.t. heterogeneity
in activity levels & susceptibility

λ(a, Z, Z1, Z2) = ZZ1λ0(a)

In general, basic reproduction number R0 equals {1 + Var(Z)} ×
{1 + Cov(Z1, Z2)} × dominant eigenvalue of β∗0(a, a

′)

Extension to age-dependent frailties (activity levels)
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Bivariate correlated frailty models

Frailty models for bivariate data

Age-invariant
individual

heterogeneity

Activity
levels

Susceptibility (&
Infectiousness)

Shared
frailty

Correlated
frailty

Age-dependent
individual

heterogeneity

Z(a)

Zi(a)
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Data

Data application: PVB19 and VZV serology

Bivariate serological survey data on parvovirus B19 (PVB19) and
varicella-zoster virus (VZV) from Belgium anno 2002

PVB19 causes range of diseases, e.g. fifth disease (transmission by
infected respiratory droplets)

Primary infection with VZV results in chickenpox, maybe reactived
resulting in herpes zoster (through direct close contact with lesions
or aerosol contact by saliva and sneezing)

n = 3379 serological profiles for the infections under study

Bivariate current status data with a representing the age at
sampling time of an individual j (infections i = 1, 2), and

Yij =

{
0, if seronegative,
1, if seropositive.

Type I interval censored (current status) data
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Data

Data application: PVB19 and VZV

Assumptions:

Social contact hypothesis: β0(a, a
′) = q(a, a′|c)c(a, a′)

Constant (infection-specific) proportionality factor: qi(a, a
′|c) ≡ qi

Gamma frailty distributions with unit mean & frailty variances γ.i

Direct likelihood approach

Infection processes:

PVB19: immunizing process (1) or recurrent infection process (2)

VZV: immunizing infection process

Models:

Age-invariant shared frailty models

Age-dependent shared frailty models: 1C and 2C: γhi, h = 1, 2
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Data

Bivariate age-invariant shared frailty models

Model R̂0 AIC BIC

SGF-1 q1 0.072 [0.069, 0.075] 3.60 [3.35, 3.88] 4937.14 4955.51
q2 0.200 [0.188, 0.214] 11.64 [10.59, 12.82]
γ 0.152 [0.118, 0.188]
ρ12 1.000 -

SGF-2 q1 0.071 [0.068, 0.074] 3.18 [2.97, 3.43] 4869.83 4894.33
σ 0.011 [0.008, 0.015]
q2 0.173 [0.163, 0.183] 8.98 [8.22, 9.83]
γ 0.032 [0.002, 0.065]
ρ12 1.000 -
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Data

Bivariate age-dependent shared frailty models

Model R̂0 AIC BIC

ADSGF-1-1C q1 0.072 [0.069, 0.076] 3.60 [3.22, 3.99] 4939.14 4963.64
q2 0.200 [0.183, 0.221] 11.64 [9.99,13.49]
γ·1 0.152 [0.100, 0.210]
φ·1 0.000 [0.000, 0.009]

ADSGF-1-2C q1 0.066 [0.062, 0.071] 3.74 [3.15, 4.87] 4912.08 4942.70
q2 0.235 [0.191, 0.299] 15.65 [11.38, 24.08]
γ·1 2.918 [1.524, 5.004]
γ·2 0.233 [0.156, 0.323]
φ·1 0.316 [0.246, 0.425]

ADSGF-2-1C q1 0.065 [0.061, 0.070] 2.90 [2.64, 3.49] 4862.93 4893.56
σ 0.012 [0.009, 0.016]
q2 0.158 [0.141, 0.179] 8.19 [7.15, 10.46]
γ·1 1.470 [0.415, 3.498]
φ·1 0.330 [0.209, 0.530]

ADSGF-2-2C q1 0.066 [0.063, 0.071] 3.30 [2.79, 4.45] 4859.26 4896.01
σ 0.011 [0.007, 0.015]
q2 0.193 [0.156, 0.257] 11.27 [8.11, 18.90]
γ·1 2.419 [0.839, 4.960]
γ·2 0.095 [0.017, 0.186]
φ·1 0.303 [0.226, 0.423]
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Data

Seroprevalence of PVB19 and VZV
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Data

Age-varying shared frailty variance
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Discussion & conclusion

Sources of heterogeneity:

Untestable assumptions regarding heterogeneity in infectiousness

Shared versus correlated frailty models: sensitivity analysis

Age-dependent frailty models:

Age-dependent frailty models improve model fits

Specific parametric decay function

Combined model for overdispersion and individual heterogeneity:

→ communicating vessels

Book work in progress: Abrams, S., Wienke, A., Unkel, S., Hens, N.
Frailty Models for Infectious Disease Epidemiology @Wiley
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