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For lifetime prediction or maintenance planning of complex deteriorating systems,
degradation modeling in the presence of health monitoring data is essential. Even though,
the majority of degradation phenomenons have physical or mechanical meanings (corro-
sion, erosion, etc.) due to the large number of unknown environmental factors influenc-
ing this latter, it is nearly impossible to base the prediction on pure deterministic mod-
els. Therefore, the degradation phenomenon can be considered as random with a gradual
time-continuous trajectory. With respect to the system under study, the degradation model
can take values in discrete or continuous space. For instance, the corrosion indicator can
take infinite possible values as soon as it begins but the cumulative number of rejected
products in a production day which can be considered as a deterioration indicator is finite
and can be enumerated, for more examples refer to [31, 45, 47].

It could be tempting to consider complex models able to take into account all available
information and describe precisely the dynamics of degradation. However, these kind of
models are not always tractable with large difficulties for inference and calibration in the
presence of data. Very simple and tractable models which can be easily calibrated can
lead to wrong evaluation of the uncertainty around the lifetime prediction. This wrong
evaluation can cause additional costs and desastrous consequences. A fair and satisfactory
degradation model should make a balance between accuracy and tractability, [25, 44].

This thesis is devoted to degradation modeling and prognosis in presence of health
monitoring data. In presence of data, the main issue is to select the best model which fit
data and can describe the underlying degradation phenomenon. Since data is collected
for a given system and conditions, it should be manipulated cautiously because it may
represent a very specific or extreme behavior of the underlying degradation phenomenon.
The best candidate model is the one which takes into account the possibility of extreme
behaviors during data collection without losing in perspective the real average degrada-
tion behavior. The usage of the degradation model can highly impact how data is tackled
and which a model is favoured. If there are safety issues or very high costs concerns,
the modeling precision is not considered in the same way. The thesis focuses on pure
statistical concerns where the best candidate is derived by efficient statistical tools. For
more details and examples, refer to [20, 30]. An efficient statistical tool is able to dis-
card irrelevant models, and if some prior knowledge on the degradation phenomenon is
available, the best model between a class of candidate can be proposed. In other words,



the aim of degradation modeling is to select a model from a set of competing models
capturing the features of the underlying degradation process. As it is mentioned before,
the methodology depends mostly on model usage, see for instance [6, 47].

Lévy processes [3] such as Wiener and gamma processes and diffusion processes
such as Black and Scholes, Ornstein Uhlembeck processes are commonly an be used to
model the degradation. Inference and model calibration for these processes have been
widely addressed in the fields of finance, biology and engineering [35, 36]. However,
in reliability engineering domain the datasets are smaller and safety constraints are sig-
nificant concerns [43, 28, 47]. The model selection for reliability engineering prediction
problems is an important issue but has not been extensively addressed, [12].

Very often, the health monitoring indicator data are heterogeneous [19, 23]. One of
the reasons is due to the heterogeneity of the collection procedure, data could be collected
by sensors, periodic or non-periodic inspections. Therefore, the available data is not
necessarily identically distributed. For degradation model calibration, goodness of fit
tests are required. The efficiency of common goodness of fit test such as Kolmogorov-
Smirnov, Anderson-Darling, Cramer von Mises, requires the independent and identically
distributed condition, refer to [17, 29, 24]. The existing tests dealing with independent
but not identically distributed random variables have, only asymptotical efficiency, which
requires large size samples [37, 42, 4, 15, 1, 46]. The independence hypothesis is also
a big constraint since many degradation model candidates don’t satisfy the condition
of independence of increments but only the conditional independance property. Tests
applied to conditionnally independent random variables (markovian property) are not
always efficient, refer [7, 11, 34, 10, 8]. Moreover, for these processes if the increments
are not identically distributed it is very difficult to propose an efficient goodness of fit test.
Another difficulty is the temporal aspect of data and non stationarity of the underlying
model. Most of the goodness of fit tests for stochastic processes deal with LA©vy or
stationary processes, see e.g. [11, 2], but for non-stationary or diffusion processes, there
are tests for each specific models but it is difficult to find a generic tool for checking the
goodness of fit in a set of candidates [13, 9, 16, 38, 22, 5, 21, 40].

The majority of goodness of fit tests use the empirical cumulative distribution func-
tion or some order statistics. The problem of non i.i.d. random variables is bypassed by
proposing a transformation which leads to a uniformly distributed data. But the depen-
dance does not permit to apply classical tests on the transformed data. A new lead is
to propose a transformation which permits to deal with non i.i.d. random variables in a
more tractable space [39]. To test the goodness of fit of data related to non i.i.d. random
variables and to chose between a class of possible models, it is also possible to consider
other metrics proposed in the literature such as divergence, Kullback-Leibler distance,
refer to [33, 32]. Another possibility is to use a test based on the famous notions of depth
initially introduced by Tukey [41] and largely studied in after on [48, 18, 14, 26, 27]. This
indicador, for a multi-dimensional distribution measures the distance between the obser-
vations and the median of a distribution. In this case, the median is the deepest point. The
depth of a multi-dimensional distribution is well defined and takes into account the geo-
metric form of the distribution domain. A test based on this indicator seems very flexible
and can be applied on different kind of data without requiring restrictive hypotheses in
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comparison to classical goodness of fit tests. These kind of tests are not commonly used
for stochastic processes and even less for degradation data.
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